Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 1996

www.artofproblemsolving.com/community/c4751
by orl, grobber, Namdung, seshadri

Day 1

1 In the plane we are given $3 \cdot n$ points ($n>1$) no three collinear, and the distance between any two of them is ≤ 1. Prove that we can construct n pairwise disjoint triangles such that: The vertex set of these triangles are exactly the given $3 n$ points and the sum of the area of these triangles $<1 / 2$.

2 For each positive integer n, let $f(n)$ be the maximal natural number such that: $2^{f(n)}$ divides $\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 \cdot i+1} 3^{i}$. Find all n such that $f(n)=1996$.

For each positive integer n, let $f(n)$ be the maximal natural number such that: $2^{f(n)}$ divides $\sum_{i=1}^{n+1 / 2}\binom{2 \cdot i+1}{n}$. Find all n such that $f(n)=1996$.

3 Find the minimum value of the expression:

$$
f(a, b, c)=(a+b)^{4}+(b+c)^{4}+(c+a)^{4}-\frac{4}{7} \cdot\left(a^{4}+b^{4}+c^{4}\right) .
$$

Day 2

1 Given 3 non-collinear points A, B, C. For each point M in the plane ($A B C$) let M_{1} be the point symmetric to M with respect to $A B, M_{2}$ be the point symmetric to M_{1} with respect to $B C$ and M^{\prime} be the point symmetric to M_{2} with respect to $A C$. Find all points M such that $M M^{\prime}$ obtains its minimum. Let this minimum value be d. Prove that d does not depend on the order of the axes of symmetry we chose (we have 3 available axes, that is $B C, C A, A B$. In the first part the order of axes we chose $A B, B C, C A$, and the second part of the problem states that the value d doesn't depend on this order).

2 There are some people in a meeting; each doesn't know at least 56 others, and for any pair, there exist a third one who knows both of them. Can the number of people be 65?

3 Find all reals a such that the sequence $\{x(n)\}, n=0,1,2, \ldots$ that satisfy: $x(0)=1996$ and $x_{n+1}=\frac{a}{1+x(n)^{2}}$ for any natural number n has a limit as n goes to infinity.

