

AoPS Community

Vietnam Team Selection Test 1997

www.artofproblemsolving.com/community/c4752 by April

Day 1

_

1	Let $ABCD$ be a given tetrahedron, with $BC = a$, $CA = b$, $AB = c$, $DA = a_1$, $DB = b_1$, $DC = c_1$. Prove that there is a unique point P satisfying
	$PA^{2} + a_{1}^{2} + b^{2} + c^{2} = PB^{2} + b_{1}^{2} + c^{2} + a^{2} = PC^{2} + c_{1}^{2} + a^{2} + b^{2} = PD^{2} + a_{1}^{2} + b_{1}^{2} + c_{1}^{2}$
	and for this point P we have $PA^2 + PB^2 + PC^2 + PD^2 \ge 4R^2$, where R is the circumradius of the tetrahedron $ABCD$. Find the necessary and sufficient condition so that this inequality is an equality.
2	 There are 25 towns in a country. Find the smallest k for which one can set up two-direction flight routes connecting these towns so that the following conditions are satisfied: 1) from each town there are exactly k direct routes to k other towns; 2) if two towns are not connected by a direct route, then there is a town which has direct routes to these two towns.
3	Find the greatest real number α for which there exists a sequence of infinitive integers (a_n) , (n = 1, 2, 3,) satisfying the following conditions: 1) $a_n > 1997n$ for every $n \in \mathbb{N}^*$; 2) For every $n \ge 2$, $U_n \ge a_n^{\alpha}$, where $U_n = \gcd\{a_i + a_k i + k = n\}$.
Day 2	
1	The function $f : \mathbb{N} \to \mathbb{Z}$ is defined by $f(0) = 2$, $f(1) = 503$ and $f(n+2) = 503f(n+1) - 1996f(n)$ for all $n \in \mathbb{N}$. Let s_1, s_2, \ldots, s_k be arbitrary integers not smaller than k , and let $p(s_i)$ be an arbitrary prime divisor of $f(2^{s_i})$, $(i = 1, 2, \ldots, k)$. Prove that, for any positive integer t $(t \le k)$, we have
	$2^t \Big \sum_{i=1}^k p(s_i)$ if and only if $2^t k$.
2	$2^t \left \sum_{i=1}^k p(s_i) \right $ if and only if $2^t k$. Find all pairs of positive real numbers (a, b) such that for every $n \in \mathbb{N}^*$ and every real root x_n of the equation $4n^2x = \log_2(2n^2x + 1)$ we always have $a^{x_n} + b^{x_n} \ge 2 + 3x_n$.