

AoPS Community

1998 Vietnam Team Selection Test

Vietnam Team Selection Test 1998

www.artofproblemsolving.com/community/c4753 by orl, yetti, grobber, rgep

Day 1

- 1 Let f(x) be a real function such that for each positive real c there exist a polynomial P(x) (maybe dependent on c) such that $|f(x) P(x)| \le c \cdot x^{1998}$ for all real x. Prove that f is a real polynomial.
- **2** In the plane we are given the circles Γ and Δ tangent to each other and Γ contains Δ . The radius of Γ is R and of Δ is $\frac{R}{2}$. Prove that for each positive integer $n \ge 3$, the equation:

$$(p(1) - p(n))^{2} = (n - 1)^{2} \cdot (2 \cdot (p(1) + p(n)) - (n - 1)^{2} - 8)$$

is the necessary and sufficient condition for *n* to exist *n* distinct circles $\Upsilon_1, \Upsilon_2, \ldots, \Upsilon_n$ such that all these circles are tangent to Γ and Δ and Υ_i is tangent to Υ_{i+1} , and Υ_1 has radius $\frac{R}{p(1)}$ and Υ_n has radius $\frac{R}{p(n)}$.

3 Let $p(1), p(2), \ldots, p(k)$ be all primes smaller than *m*, prove that

$$\sum_{i=1}^{k} \frac{1}{p(i)} + \frac{1}{p(i)^2} > \ln(\ln(m)).$$

Day 2	
1	Find all integer polynomials $P(x)$, the highest coefficent is 1 such that: there exist infinitely irrational numbers a such that $p(a)$ is a positive integer.
2	Let <i>d</i> be a positive divisor of $5 + 1998^{1998}$. Prove that $d = 2 \cdot x^2 + 2 \cdot x \cdot y + 3 \cdot y^2$, where <i>x</i> , <i>y</i> are integers if and only if <i>d</i> is congruent to 3 or 7 (mod 20).
3	In a conference there are $n \ge 10$ people. It is known that:
	I. Each person knows at least $\left[\frac{n+2}{3}\right]$ other people. II. For each pair of person A and B who don't know each other, there exist some people $A(1), A(2), \ldots, A(k)$ such that A knows $A(1), A(i)$ knows $A(i+1)$ and $A(k)$ knows B . III. There doesn't exist a Hamilton path.
	Duran de la Maria en divida de service de inte Ormana en Armana har a Unavillar e cola condata

Prove that: We can divide those people into 2 groups: *A* group has a Hamilton cycle, and the other contains of people who don't know each other.

AoPS Community

1998 Vietnam Team Selection Test

Act of Problem Solving is an ACS WASC Accredited School.