

AoPS Community

1999 Vietnam Team Selection Test

Vietnam Team Selection Test 1999

www.artofproblemsolving.com/community/c4754 by orl, Rafal, darij grinberg, seshadri

Day	1
-----	---

1		Let an odd prime p be a given number satisfying $2^h \neq 1 \pmod{p}$ for all $h ,and an even integer a \in \left(\frac{p}{2}, p\right). Let us consider the sequence \{a_n\}_{n=0}^{\infty} defined by a_0 = a anda_{n+1} = p - b_n for n = 0, 1, 2, \ldots, where b_n is the greatest odd divisor of a_n. Show that \{a_n\} isperiodical and find its least positive period.$
2		Two polynomials $f(x)$ and $g(x)$ with real coefficients are called similar if there exist nonzero real number a such that $f(x) = q \cdot g(x)$ for all $x \in R$.
		I. Show that there exists a polynomial $P(x)$ of degree 1999 with real coefficients which satisfies the condition: $(P(x))^2 - 4$ and $(P'(x))^2 \cdot (x^2 - 4)$ are similar.
		II. How many polynomials of degree 1999 are there which have above mentioned property.
3		Let a convex polygon H be given. Show that for every real number $a \in (0, 1)$ there exist 6 distinct points on the sides of H , denoted by A_1, A_2, \ldots, A_6 clockwise, satisfying the conditions:
		I. $(A_1A_2) = (A_5A_4) = a \cdot (A_6A_3)$. II. Lines A_1A_2, A_5A_4 are equidistant from A_6A_3 .
		(By (AB) we denote vector AB)
D	ay 2	
1		Let a sequence of positive reals $\{u_n\}_{n=1}^{\infty}$ be given. For every positive integer n , let k_n be the least positive integer satisfying:
		$\sum_{i=1}^{k_n} \frac{1}{i} \ge \sum_{i=1}^n u_i.$

Show that the sequence $\left\{rac{k_{n+1}}{k_n}
ight\}$ has finite limit if and only if $\{u_n\}$ does.

2 Let a triangle *ABC* inscribed in circle Γ be given. Circle Θ lies in angle of triangle and touches sides *AB*, *AC* at *M*₁, *N*₁ and touches internally Γ at *P*₁. The points *M*₂, *N*₂, *P*₂ and *M*₃, *N*₃, *P*₃

AoPS Community

1999 Vietnam Team Selection Test

are defined similarly to angles B and C respectively. Show that M_1N_1, M_2N_2 and M_3N_3 intersect each other at their midpoints.

3 Let a regular polygon with p vertices be given, where p is an odd prime number. At every vertex there is one monkey. An owner of monkeys takes p peanuts, goes along the perimeter of polygon clockwise and delivers to the monkeys by the following rule: Gives the first peanut for the leader, skips the two next vertices and gives the second peanut to the monkey at the next vertex; skip four next vertices gives the second peanut for the monkey at the next vertex ... after giving the k-th peanut, he skips the $2 \cdot k$ next vertices and gives k + 1-th for the monkey at the next vertex. He does so until all p peanuts are delivered.

I. How many monkeys are there which does not receive peanuts?

II. How many edges of polygon are there which satisfying condition: both two monkey at its vertex received peanut(s)?

AoPS Online 🔯 AoPS Academy 🔯 AoPS & CADEMY