Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 1999

www.artofproblemsolving.com/community/c4754
by orl, Rafal, darij grinberg, seshadri

Day 1

1 Let an odd prime p be a given number satisfying $2^{h} \neq 1(\bmod p)$ for all $h<p-1, h \in \mathbb{N}^{*}$, and an even integer $a \in\left(\frac{p}{2}, p\right)$. Let us consider the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ defined by $a_{0}=a$ and $a_{n+1}=p-b_{n}$ for $n=0,1,2, \ldots$, where b_{n} is the greatest odd divisor of a_{n}. Show that $\left\{a_{n}\right\}$ is periodical and find its least positive period.

2 Two polynomials $f(x)$ and $g(x)$ with real coefficients are called similar if there exist nonzero real number a such that $f(x)=q \cdot g(x)$ for all $x \in R$.
I. Show that there exists a polynomial $P(x)$ of degree 1999 with real coefficients which satisfies the condition: $(P(x))^{2}-4$ and $\left(P^{\prime}(x)\right)^{2} \cdot\left(x^{2}-4\right)$ are similar.
II. How many polynomials of degree 1999 are there which have above mentioned property.

3 Let a convex polygon H be given. Show that for every real number $a \in(0,1)$ there exist 6 distinct points on the sides of H, denoted by $A_{1}, A_{2}, \ldots, A_{6}$ clockwise, satisfying the conditions:
I. $\left(A_{1} A_{2}\right)=\left(A_{5} A_{4}\right)=a \cdot\left(A_{6} A_{3}\right)$.
II. Lines $A_{1} A_{2}, A_{5} A_{4}$ are equidistant from $A_{6} A_{3}$.
(By $(A B)$ we denote vector $A B$)

Day 2

1 Let a sequence of positive reals $\left\{u_{n}\right\}_{n=1}^{\infty}$ be given. For every positive integer n, let k_{n} be the least positive integer satisfying:

$$
\sum_{i=1}^{k_{n}} \frac{1}{i} \geq \sum_{i=1}^{n} u_{i}
$$

Show that the sequence $\left\{\frac{k_{n+1}}{k_{n}}\right\}$ has finite limit if and only if $\left\{u_{n}\right\}$ does.
2 Let a triangle $A B C$ inscribed in circle Γ be given. Circle Θ lies in angle of triangle and touches sides $A B, A C$ at M_{1}, N_{1} and touches internally Γ at P_{1}. The points M_{2}, N_{2}, P_{2} and M_{3}, N_{3}, P_{3}
are defined similarly to angles B and C respectively. Show that $M_{1} N_{1}, M_{2} N_{2}$ and $M_{3} N_{3}$ intersect each other at their midpoints.

3 Let a regular polygon with p vertices be given, where p is an odd prime number. At every vertex there is one monkey. An owner of monkeys takes p peanuts, goes along the perimeter of polygon clockwise and delivers to the monkeys by the following rule: Gives the first peanut for the leader, skips the two next vertices and gives the second peanut to the monkey at the next vertex; skip four next vertices gives the second peanut for the monkey at the next vertex ... after giving the k-th peanut, he skips the $2 \cdot k$ next vertices and gives $k+1$-th for the monkey at the next vertex. He does so until all p peanuts are delivered.
I. How many monkeys are there which does not receive peanuts?
II. How many edges of polygon are there which satisfying condition: both two monkey at its vertex received peanut(s)?

