

AoPS Community

Vietnam Team Selection Test 2000

www.artofproblemsolving.com/community/c4755 by N.T.TUAN

Day 1

1	Two circles C_1 and C_2 intersect at points P and Q . Their common tangent, closer to P than to Q , touches C_1 at A and C_2 at B . The tangents to C_1 and C_2 at P meet the other circle at points $E \neq P$ and $F \neq P$, respectively. Let H and K be the points on the rays AF and BE respectively such that $AH = AP$ and $BK = BP$. Prove that A, H, Q, K, B lie on a circle.
2	Let k be a given positive integer. Dene $x_1 = 1$ and, for each $n > 1$, set x_{n+1} to be the smallest positive integer not belonging to the set $\{x_i, x_i + ik i = 1,, n\}$. Prove that there is a real number a such that $x_n = [an]$ for all $n \in \mathbb{N}$.
3	Two players alternately replace the stars in the expression
	$*x^{2000} + *x^{1999} + \dots + *x + 1$
	by real numbers. The player who makes the last move loses if the resulting polynomial has a real root t with $ t < 1$, and wins otherwise. Give a winning strategy for one of the players.
Day 2	
1	
I	Let a, b, c be pairwise coprime natural numbers. A positive integer n is said to be <i>stubborn</i> if it cannot be written in the form $n = bcx + cay + abz$, for some $x, y, z \in \mathbb{N}$. Determine the number of stubborn numbers.
2	Let a, b, c be pairwise coprime natural numbers. A positive integer n is said to be <i>stubborn</i> if it cannot be written in the form $n = bcx + cay + abz$, for some $x, y, z \in \mathbb{N}$. Determine the number of stubborn numbers. Let $a > 1$ and $r > 1$ be real numbers. (a) Prove that if $f : \mathbb{R}^+ \to \mathbb{R}^+$ is a function satisfying the conditions (i) $f(x)^2 \le ax^r f(\frac{x}{a})$ for all $x > 0$, (ii) $f(x) \le 2^{2000}$ for all $x < \frac{1}{2^{2000}}$, then $f(x) \le x^r a^{1-r}$ for all $x > 0$. (b) Construct a function $f : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying condition (i) such that for all $x > 0, f(x) > x^r a^{1-r}$.

3 A collection of 2000 congruent circles is given on the plane such that no two circles are tangent and each circle meets at least two other circles. Let *N* be the number of points that belong to at least two of the circles. Find the smallest possible value of *N*.

Art of Problem Solving is an ACS WASC Accredited School.