Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 2000

www.artofproblemsolving.com/community/c4755
by N.T.TUAN

Day 1

1 Two circles C_{1} and C_{2} intersect at points P and Q. Their common tangent, closer to P than to Q, touches C_{1} at A and C_{2} at B. The tangents to C_{1} and C_{2} at P meet the other circle at points $E \neq P$ and $F \neq P$, respectively. Let H and K be the points on the rays $A F$ and $B E$ respectively such that $A H=A P$ and $B K=B P$. Prove that A, H, Q, K, B lie on a circle.

2 Let k be a given positive integer. Dene $x_{1}=1$ and, for each $n>1$, set x_{n+1} to be the smallest positive integer not belonging to the set $\left\{x_{i}, x_{i}+i k \mid i=1, \ldots, n\right\}$. Prove that there is a real number a such that $x_{n}=[a n]$ for all $n \in \mathbb{N}$.

3 Two players alternately replace the stars in the expression

$$
* x^{2000}+* x^{1999}+\ldots+* x+1
$$

by real numbers. The player who makes the last move loses if the resulting polynomial has a real root t with $|t|<1$, and wins otherwise. Give a winning strategy for one of the players.

Day 2

1 Let a, b, c be pairwise coprime natural numbers. A positive integer n is said to be stubborn if it cannot be written in the form $n=b c x+c a y+a b z$, for some $x, y, z \in \mathbb{N}$. Determine the number of stubborn numbers.

2 Let $a>1$ and $r>1$ be real numbers.
(a) Prove that if $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a function satisfying the conditions
(i) $f(x)^{2} \leq a x^{r} f\left(\frac{x}{a}\right)$ for all $x>0$,
(ii) $f(x)<2^{2000}$ for all $x<\frac{1}{2^{2000}}$,
then $f(x) \leq x^{r} a^{1-r}$ for all $x>0$.
(b) Construct a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying condition (i) such that for all $x>0, f(x)>$ $x^{r} a^{1-r}$.

3 A collection of 2000 congruent circles is given on the plane such that no two circles are tangent and each circle meets at least two other circles. Let N be the number of points that belong to at least two of the circles. Find the smallest possible value of N.

