AoPS Community

Vietnam Team Selection Test 2001

www.artofproblemsolving.com/community/c4756
by orl, darij grinberg, grobber, al.M.V., hxtung

Day 1

1 Let a sequence of integers $\left\{a_{n}\right\}, n \in \mathbb{N}$ be given, defined by

$$
a_{0}=1, a_{n}=a_{n-1}+a_{[n / 3]}
$$

for all $n \in \mathbb{N}^{*}$.
Show that for all primes $p \leq 13$, there are infinitely many integer numbers k such that a_{k} is divided by p.
(Here $[x]$ denotes the integral part of real number x).
2 In the plane let two circles be given which intersect at two points A, B; Let $P T$ be one of the two common tangent line of these circles (P, T are points of tangency). Tangents at P and T of the circumcircle of triangle $A P T$ meet each other at S. Let H be a point symmetric to B under $P T$. Show that A, S, H are collinear.

3 Some club has 42 members. Its known that among 31 arbitrary club members, we can find one pair of a boy and a girl that they know each other. Show that from club members we can choose 12 pairs of knowing each other boys and girls.

Day 2

1 Lets consider the real numbers a, b, c satisfying the condition

$$
21 \cdot a \cdot b+2 \cdot b \cdot c+8 \cdot c \cdot a \leq 12
$$

Find the minimal value of the expression

$$
P(a, b, c)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c} .
$$

2 Let an integer $n>1$ be given. In the space with orthogonal coordinate system $O x y z$ we denote by T the set of all points (x, y, z) with x, y, z are integers, satisfying the condition: $1 \leq x, y, z \leq$ n. We paint all the points of T in such a way that: if the point $A\left(x_{0}, y_{0}, z_{0}\right)$ is painted then points
$B\left(x_{1}, y_{1}, z_{1}\right)$ for which $x_{1} \leq x_{0}, y_{1} \leq y_{0}$ and $z_{1} \leq z_{0}$ could not be painted. Find the maximal number of points that we can paint in such a way the above mentioned condition is satisfied.

3 Let a sequence $\left\{a_{n}\right\}, n \in \mathbb{N}^{*}$ given, satisfying the condition

$$
0<a_{n+1}-a_{n} \leq 2001
$$

for all $n \in \mathbb{N}^{*}$
Show that there are infinitely many pairs of positive integers (p, q) such that $p<q$ and a_{p} is divisor of a_{q}.

