

AoPS Community

2001 Vietnam Team Selection Test

Vietnam Team Selection Test 2001

www.artofproblemsolving.com/community/c4756 by orl, darij grinberg, grobber, al.M.V., hxtung

Day 1

1	Let a sequence of integers $\{a_n\}$, $n\in\mathbb{N}$ be given, defined by
	$a_0 = 1, a_n = a_{n-1} + a_{[n/3]}$
	for all $n \in \mathbb{N}^*$.
	Show that for all primes $p \le 13$, there are infinitely many integer numbers k such that a_k is divided by p . (Here $[x]$ denotes the integral part of real number x).
2	In the plane let two circles be given which intersect at two points A, B ; Let PT be one of the two common tangent line of these circles (P, T are points of tangency). Tangents at P and T of the circumcircle of triangle APT meet each other at S . Let H be a point symmetric to B under PT . Show that A, S, H are collinear.
3	Some club has 42 members. Its known that among 31 arbitrary club members, we can find one pair of a boy and a girl that they know each other. Show that from club members we can choose 12 pairs of knowing each other boys and girls.
Day	2

1 Lets consider the real numbers *a*, *b*, *c* satisfying the condition

$$21 \cdot a \cdot b + 2 \cdot b \cdot c + 8 \cdot c \cdot a \leq 12.$$

Find the minimal value of the expression

$$P(a, b, c) = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$$

2 Let an integer n > 1 be given. In the space with orthogonal coordinate system Oxyz we denote by T the set of all points (x, y, z) with x, y, z are integers, satisfying the condition: $1 \le x, y, z \le n$. We paint all the points of T in such a way that: if the point $A(x_0, y_0, z_0)$ is painted then points

AoPS Community

2001 Vietnam Team Selection Test

 $B(x_1, y_1, z_1)$ for which $x_1 \le x_0, y_1 \le y_0$ and $z_1 \le z_0$ could not be painted. Find the maximal number of points that we can paint in such a way the above mentioned condition is satisfied.

3 Let a sequence $\{a_n\}$, $n \in \mathbb{N}^*$ given, satisfying the condition

$$0 < a_{n+1} - a_n \le 2001$$

for all $n \in \mathbb{N}^*$

Show that there are infinitely many pairs of positive integers (p,q) such that p < q and a_p is divisor of a_q .

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.