

AoPS Community

2017 ELMO Problems

ELMO Problems 2017

www.artofproblemsolving.com/community/c475795 by cjquines0, whatshisbucket

Day 1 June 10th

1 Let a_1, a_2, \ldots, a_n be positive integers with product P, where n is an odd positive integer. Prove that

 $\gcd(a_1^n + P, a_2^n + P, \dots, a_n^n + P) \le 2 \gcd(a_1, \dots, a_n)^n.$

Proposed by Daniel Liu

2 Let *ABC* be a triangle with orthocenter *H*, and let *M* be the midpoint of \overline{BC} . Suppose that *P* and *Q* are distinct points on the circle with diameter \overline{AH} , different from *A*, such that *M* lies on line *PQ*. Prove that the orthocenter of $\triangle APQ$ lies on the circumcircle of $\triangle ABC$.

Proposed by Michael Ren

3 nic κ y is drawing kappas in the cells of a square grid. However, he does not want to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all real numbers d > 0 such that for every positive integer n, nic κ y can label at least dn^2 cells of an $n \times n$ square.

Proposed by Mihir Singhal and Michael Kural

Day 2	June 17th
4	An integer $n > 2$ is called <i>tasty</i> if for every ordered pair of positive integers (a, b) with $a+b=n$, at least one of $\frac{a}{b}$ and $\frac{b}{a}$ is a terminating decimal. Do there exist infinitely many tasty integers? <i>Proposed by Vincent Huang</i>
5	The edges of K_{2017} are each labeled with 1, 2, or 3 such that any triangle has sum of labels at least 5. Determine the minimum possible average of all $\binom{2017}{2}$ labels. (Here K_{2017} is defined as the complete graph on 2017 vertices, with an edge between every pair of vertices.)
	Proposed by Michael Ma

AoPS Community

2017 ELMO Problems

6 Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all real numbers a, b, and c:

(i) If $a + b + c \ge 0$ then $f(a^3) + f(b^3) + f(c^3) \ge 3f(abc)$.

(ii) If $a + b + c \le 0$ then $f(a^3) + f(b^3) + f(c^3) \le 3f(abc)$.

Proposed by Ashwin Sah

Act of Problem Solving is an ACS WASC Accredited School.