## AoPS Community

## ELMO Problems 2017

www.artofproblemsolving.com/community/c475795
by cjquines0, whatshisbucket

Day 1 June 10th
1 Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers with product $P$, where $n$ is an odd positive integer. Prove that

$$
\operatorname{gcd}\left(a_{1}^{n}+P, a_{2}^{n}+P, \ldots, a_{n}^{n}+P\right) \leq 2 \operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)^{n}
$$

## Proposed by Daniel Liu

2 Let $A B C$ be a triangle with orthocenter $H$, and let $M$ be the midpoint of $\overline{B C}$. Suppose that $P$ and $Q$ are distinct points on the circle with diameter $\overline{A H}$, different from $A$, such that $M$ lies on line $P Q$. Prove that the orthocenter of $\triangle A P Q$ lies on the circumcircle of $\triangle A B C$.

Proposed by Michael Ren
3 nic $\kappa$ y is drawing kappas in the cells of a square grid. However, he does not want to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all real numbers $d>0$ such that for every positive integer $n$, nic $\kappa$ y can label at least $d n^{2}$ cells of an $n \times n$ square.

Proposed by Mihir Singhal and Michael Kural
Day 2 June 17th
4 An integer $n>2$ is called tasty if for every ordered pair of positive integers ( $a, b$ ) with $a+b=n$, at least one of $\frac{a}{b}$ and $\frac{b}{a}$ is a terminating decimal. Do there exist infinitely many tasty integers?

## Proposed by Vincent Huang

5 The edges of $K_{2017}$ are each labeled with 1, 2, or 3 such that any triangle has sum of labels at least 5 . Determine the minimum possible average of all $\binom{2017}{2}$ labels.
(Here $K_{2017}$ is defined as the complete graph on 2017 vertices, with an edge between every pair of vertices.)

Proposed by Michael Ma

6 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all real numbers $a, b$, and $c$ :
(i) If $a+b+c \geq 0$ then $f\left(a^{3}\right)+f\left(b^{3}\right)+f\left(c^{3}\right) \geq 3 f(a b c)$.
(ii) If $a+b+c \leq 0$ then $f\left(a^{3}\right)+f\left(b^{3}\right)+f\left(c^{3}\right) \leq 3 f(a b c)$.

## Proposed by Ashwin Sah

