AoPS Community

ELMO Shortlist 2017

www.artofproblemsolving.com/community/c475796
by cjquines0, tastymath75025, whatshisbucket

- Algebra

1 Let $0<k<\frac{1}{2}$ be a real number and let a_{0}, b_{0} be arbitrary real numbers in $(0,1)$. The sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ are then defined recursively by

$$
a_{n+1}=\frac{a_{n}+1}{2} \text { and } b_{n+1}=b_{n}^{k}
$$

for $n \geq 0$. Prove that $a_{n}<b_{n}$ for all sufficiently large n.
[i]Proposed by Michael Ma
2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all real numbers a, b, and c :
(i) If $a+b+c \geq 0$ then $f\left(a^{3}\right)+f\left(b^{3}\right)+f\left(c^{3}\right) \geq 3 f(a b c)$.
(ii) If $a+b+c \leq 0$ then $f\left(a^{3}\right)+f\left(b^{3}\right)+f\left(c^{3}\right) \leq 3 f(a b c)$.

Proposed by Ashwin Sah

- Combinatorics

$1 \quad$ Let m and n be fixed distinct positive integers. A wren is on an infinite board indexed by \mathbb{Z}^{2}, and from a square (x, y) may move to any of the eight squares $(x \pm m, y \pm n)$ or $(x \pm n, y \pm m)$. For each $\{m, n\}$, determine the smallest number k of moves required to travel from $(0,0)$ to $(1,0)$, or prove that no such k exists.
[i]Proposed by Michael Ren
2 The edges of K_{2017} are each labeled with 1, 2, or 3 such that any triangle has sum of labels at least 5 . Determine the minimum possible average of all $\binom{2017}{2}$ labels.
(Here K_{2017} is defined as the complete graph on 2017 vertices, with an edge between every pair of vertices.)

Proposed by Michael Ma

AoPS Community

2017 ELMO Shortlist

3 Consider a finite binary string b with at least 2017 ones. Show that one can insert some plus signs in between pairs of digits such that the resulting sum, when performed in base 2 , is equal to a power of two.
[i]Proposed by David Stoner
4 nic $\kappa \mathrm{y}$ is drawing kappas in the cells of a square grid. However, he does not want to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all real numbers $d>0$ such that for every positive integer n, nic $\kappa \mathbf{y}$ can label at least $d n^{2}$ cells of an $n \times n$ square.

Proposed by Mihir Singhal and Michael Kural

5 There are n MOPpers p_{1}, \ldots, p_{n} designing a carpool system to attend their morning class. Each p_{i} 's car fits $\chi\left(p_{i}\right)$ people ($\chi:\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow\{1,2, \ldots, n\}$). A c-fair carpool system is an assignment of one or more drivers on each of several days, such that each MOPper drives c times, and all cars are full on each day. (More precisely, it is a sequence of sets $\left(S_{1}, \ldots, S_{m}\right)$ such that $\left|\left\{k: p_{i} \in S_{k}\right\}\right|=c$ and $\sum_{x \in S_{j}} \chi(x)=n$ for all i, j.)
Suppose it turns out that a 2 -fair carpool system is possible but not a 1-fair carpool system. Must n be even?
[i]Proposed by Nathan Ramesh and Palmer Mebane

- Geometry

1 Let $A B C$ be a triangle with orthocenter H, and let M be the midpoint of $\overline{B C}$. Suppose that P and Q are distinct points on the circle with diameter $\overline{A H}$, different from A, such that M lies on line $P Q$. Prove that the orthocenter of $\triangle A P Q$ lies on the circumcircle of $\triangle A B C$.

Proposed by Michael Ren

2 Let $A B C$ be a scalene triangle with $\angle A=60^{\circ}$. Let E and F be the feet of the angle bisectors of $\angle A B C$ and $\angle A C B$, respectively, and let I be the incenter of $\triangle A B C$. Let P, Q be distinct points such that $\triangle P E F$ and $\triangle Q E F$ are equilateral. If O is the circumcenter of of $\triangle A P Q$, show that $\overline{O I} \perp \overline{B C}$.
[i]Proposed by Vincent Huang
$3 \quad$ Call the ordered pair of distinct circles (ω, γ) scribable if there exists a triangle with circumcircle ω and incircle γ. Prove that among n distinct circles there are at most $(n / 2)^{2}$ scribable pairs.
[i]Proposed by Daniel Liu

4 Let $A B C$ be an acute triangle with incenter I and circumcircle ω. Suppose a circle ω_{B} is tangent to $B A, B C$, and internally tangent to ω at B_{1}, while a circle ω_{C} is tangent to $C A, C B$, and internally tangent to ω at C_{1}. If B_{2}, C_{2} are the points opposite to B, C on ω, respectively, and X denotes the intersection of $B_{1} C_{2}, B_{2} C_{1}$, prove that $X A=X I$.
[i]Proposed by Vincent Huang and Nathan Weckwerth

- Number Theory

1 Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers with product P, where n is an odd positive integer. Prove that

$$
\operatorname{gcd}\left(a_{1}^{n}+P, a_{2}^{n}+P, \ldots, a_{n}^{n}+P\right) \leq 2 \operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)^{n}
$$

Proposed by Daniel Liu
2 An integer $n>2$ is called tasty if for every ordered pair of positive integers (a, b) with $a+b=n$, at least one of $\frac{a}{b}$ and $\frac{b}{a}$ is a terminating decimal. Do there exist infinitely many tasty integers? Proposed by Vincent Huang

3 For each integer $C>1$ decide whether there exist pairwise distinct positive integers $a_{1}, a_{2}, a_{3}, \ldots$ such that for every $k \geq 1, a_{k+1}^{k}$ divides $C^{k} a_{1} a_{2} \ldots a_{k}$.
[i]Proposed by Daniel Liu

