

AoPS Community

2005 Vietnam Team Selection Test

Vietnam Team Selection Test 2005

www.artofproblemsolving.com/community/c4760

by grobber, darij grinberg, namanhams, fleeting_guest, pigfly, orl, Namdung

Day 1	
1	Let $(I), (O)$ be the incircle, and, respectiely, circumcircle of ABC . (I) touches BC, CA, AB in D, E, F respectively. We are also given three circles $\omega_a, \omega_b, \omega_c$, tangent to $(I), (O)$ in D, K (for ω_a), E, M (for ω_b), and F, N (for ω_c).
	a) Show that DK, EM, FN are concurrent in a point P ;
	b) Show that the orthocenter of DEF lies on OP .
2	Given <i>n</i> chairs around a circle which are marked with numbers from 1 to <i>n</i> . There are $k, k \le 4 \cdot n$ students sitting on those chairs .Two students are called neighbours if there is no student sitting between them. Between two neighbours students ,there are at less 3 chairs. Find the number of choices of <i>k</i> chairs so that <i>k</i> students can sit on those and the condition is satisfied.
3	Find all functions $f : \mathbb{Z} \mapsto \mathbb{Z}$ satisfying the condition: $f(x^3 + y^3 + z^3) = f(x)^3 + f(y)^3 + f(z)^3$.
Day 2	
1	Let be given positive reals a , b , c . Prove that: $\frac{a^3}{(a+b)^3} + \frac{b^3}{(b+c)^3} + \frac{c^3}{(c+a)^3} \ge \frac{3}{8}$.
2	Let $p \in \mathbb{P}, p > 3$. Calcute:
	a) $S = \sum_{k=1}^{\frac{p-1}{2}} \left[\frac{2k^2}{p}\right] - 2 \cdot \left[\frac{k^2}{p}\right]$ if $p \equiv 1 \mod 4$
	b) $T = \sum_{k=1}^{\frac{p-1}{2}} \left[\frac{k^2}{p}\right]$ if $p \equiv 1 \mod 8$
3	<i>n</i> is called <i>diamond 2005</i> if $n = \overline{ab99999999cd}$, e.g. 2005×9 . Let $\{a_n\} : a_n < C \cdot n, \{a_n\}$ is increasing. Prove that $\{a_n\}$ contain infinite <i>diamond 2005</i> .

Compare with this problem. (http://www.mathlinks.ro/Forum/topic-15091.html)

AoPS Online AoPS Academy AoPS Caster

Art of Problem Solving is an ACS WASC Accredited School.