Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 2005

www.artofproblemsolving.com/community/c4760
by grobber, darij grinberg, namanhams, fleeting_guest, pigfly, orl, Namdung

Day 1

1 Let $(I),(O)$ be the incircle, and, respectiely, circumcircle of $A B C$. (I) touches $B C, C A, A B$ in D, E, F respectively. We are also given three circles $\omega_{a}, \omega_{b}, \omega_{c}$, tangent to $(I),(O)$ in D, K (for $\left.\omega_{a}\right), E, M$ (for $\left.\omega_{b}\right)$, and F, N (for ω_{c}).
a) Show that $D K, E M, F N$ are concurrent in a point P;
b) Show that the orthocenter of $D E F$ lies on $O P$.

2 Given n chairs around a circle which are marked with numbers from 1 to n. There are $k, k \leq 4 \cdot n$ students sitting on those chairs .Two students are called neighbours if there is no student sitting between them. Between two neighbours students ,there are at less 3 chairs. Find the number of choices of k chairs so that k students can sit on those and the condition is satisfied.
$3 \quad$ Find all functions $f: \mathbb{Z} \mapsto \mathbb{Z}$ satisfying the condition: $f\left(x^{3}+y^{3}+z^{3}\right)=f(x)^{3}+f(y)^{3}+f(z)^{3}$.

Day 2

1 Let be given positive reals a, b, c. Prove that: $\frac{a^{3}}{(a+b)^{3}}+\frac{b^{3}}{(b+c)^{3}}+\frac{c^{3}}{(c+a)^{3}} \geq \frac{3}{8}$.
2 Let $p \in \mathbb{P}, p>3$. Calcute:
a) $S=\sum_{k=1}^{\frac{p-1}{2}}\left[\frac{2 k^{2}}{p}\right]-2 \cdot\left[\frac{k^{2}}{p}\right]$ if $p \equiv 1 \bmod 4$
b) $T=\sum_{k=1}^{\frac{p-1}{2}}\left[\frac{k^{2}}{p}\right]$ if $p \equiv 1 \bmod 8$
$3 n$ is called diamond 2005 if $n=\overline{\ldots a b 999 \ldots 99999 c d \ldots,}$, e.g. 2005×9. Let $\left\{a_{n}\right\}: a_{n}<C \cdot n,\left\{a_{n}\right\}$ is increasing. Prove that $\left\{a_{n}\right\}$ contain infinite diamond 2005.

Compare with this problem. (http://www.mathlinks.ro/Forum/topic-15091.html)

