Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 2006

www.artofproblemsolving.com/community/c4761
by nmtruong1986, duongqua

Day 1

1 Given an acute angles triangle $A B C$, and H is its orthocentre. The external bisector of the angle $\angle B H C$ meets the sides $A B$ and $A C$ at the points D and E respectively. The internal bisector of the angle $\angle B A C$ meets the circumcircle of the triangle $A D E$ again at the point K. Prove that $H K$ is through the midpoint of the side $B C$.

2 Find all pair of integer numbers (n, k) such that n is not negative and k is greater than 1 , and satisfying that the number:

$$
A=17^{2006 n}+4.17^{2 n}+7.19^{5 n}
$$

can be represented as the product of k consecutive positive integers.
3 In the space are given 2006 distinct points, such that no 4 of them are coplanar. One draws a segment between each pair of points.
A natural number m is called good if one can put on each of these segments a positive integer not larger than m, so that every triangle whose three vertices are among the given points has the property that two of this triangle's sides have equal numbers put on, while the third has a larger number put on.
Find the minimum value of a good number m.

Day 2

1 Prove that for all real numbers $x, y, z \in[1,2]$ the following inequality always holds:

$$
(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \geq 6\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right) .
$$

When does the equality occur?
2 Given a non-isoceles triangle $A B C$ inscribes a circle (O, R) (center O, radius R). Consider a varying line l such that $l \perp O A$ and l always intersects the rays $A B, A C$ and these intersectional points are called M, N. Suppose that the lines $B N$ and $C M$ intersect, and if the intersectional point is called K then the lines $A K$ and $B C$ intersect. 1, Assume that P is the intersectional point of $A K$ and $B C$. Show that the circumcircle of the triangle $M N P$ is always through a fixed point. 2, Assume that H is the orthocentre of the triangle $A M N$. Denote $B C=a$, and d is the distance between A and the line $H K$. Prove that $d \leq \sqrt{4 R^{2}-a^{2}}$ and the equality occurs iff the line l is through the intersectional point of two lines $A O$ and $B C$.

3 The real sequence $\left\{a_{n} \mid n=0,1,2,3, \ldots\right\}$ defined $a_{0}=1$ and

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{1}{3 \cdot a_{n}}\right) .
$$

Denote

$$
A_{n}=\frac{3}{3 \cdot a_{n}^{2}-1} .
$$

Prove that A_{n} is a perfect square and it has at least n distinct prime divisors.

