

# **AoPS Community**

# 2007 Vietnam Team Selection Test

### Vietnam Team Selection Test 2007

www.artofproblemsolving.com/community/c4762 by nkht-tk14, N.T.TUAN, GacKiem

#### Day 1

1 Given two sets A, B of positive real numbers such that: |A| = |B| = n;  $A \neq B$  and S(A) = S(B), where |X| is the number of elements and S(X) is the sum of all elements in set X. Prove that we can fill in each unit square of a  $n \times n$  square with positive numbers and some zeros such that:

a) the set of the sum of all numbers in each row equals A;

b) the set of the sum of all numbers in each column equals A.

c) there are at least  $(n-1)^2 + k$  zero numbers in the  $n \times n$  array with  $k = |A \cap B|$ .

2 Let ABC be an acute triangle with incricle (I).  $(K_A)$  is the cricle such that  $A \in (K_A)$  and  $AK_A \perp BC$  and it in-tangent for (I) at  $A_1$ , similarly we have  $B_1, C_1$ . a) Prove that  $AA_1, BB_1, CC_1$  are concurrent, called point-concurrent is P. b) Assume circles  $(J_A), (J_B), (J_C)$  are symmetry for excircles  $(I_A), (I_B), (I_C)$  across midpoints of BC, CA, AB, resp. Prove that  $P_{P/(J_A)} = P_{P/(J_B)} = P_{P/(J_C)}$ .

Note. If (O; R) is a circle and M is a point then  $P_{M/(O)} = OM^2 - R^2$ .

**3** Given a triangle *ABC*. Find the minimum of

$$\frac{\cos^2 \frac{A}{2} \cos^2 \frac{B}{2}}{\cos^2 \frac{C}{2}} + \frac{\cos^2 \frac{B}{2} \cos^2 \frac{C}{2}}{\cos^2 \frac{A}{2}} + \frac{\cos^2 \frac{C}{2} \cos^2 \frac{A}{2}}{\cos^2 \frac{B}{2}}.$$

## Day 2

**4** Find all continuous functions  $f : \mathbb{R} \to \mathbb{R}$  such that for all real x we have

$$f(x) = f\left(x^2 + \frac{x}{3} + \frac{1}{9}\right).$$

**5** Let  $A \subset \{1, 2, ..., 4014\}$ , |A| = 2007, such that *a* does not divide *b* for all distinct elements  $a, b \in A$ . For a set *X* as above let us denote with  $m_X$  the smallest element in *X*. Find min  $m_A$  (for all *A* with the above properties).

## **AoPS Community**

# 2007 Vietnam Team Selection Test

**6** Let  $A_1A_2...A_9$  be a regular 9-gon. Let  $\{A_1, A_2, ..., A_9\} = S_1 \cup S_2 \cup S_3$  such that  $|S_1| = |S_2| = |S_3| = 3$ . Prove that there exists  $A, B \in S_1, C, D \in S_2, E, F \in S_3$  such that AB = CD = EF and  $A \neq B, C \neq D, E \neq F$ .

Art of Problem Solving is an ACS WASC Accredited School.