AoPS Community

Vietnam Team Selection Test 2007

www.artofproblemsolving.com/community/c4762
by nkht-tk14, N.T.TUAN, GacKiem

Day 1

1 Given two sets A, B of positive real numbers such that: $|A|=|B|=n ; A \neq B$ and $S(A)=S(B)$, where $|X|$ is the number of elements and $S(X)$ is the sum of all elements in set X. Prove that we can fill in each unit square of a $n \times n$ square with positive numbers and some zeros such that:
a) the set of the sum of all numbers in each row equals A;
b) the set of the sum of all numbers in each column equals A.
c) there are at least $(n-1)^{2}+k$ zero numbers in the $n \times n$ array with $k=|A \cap B|$.

2 Let $A B C$ be an acute triangle with incricle (I). $\left(K_{A}\right)$ is the cricle such that $A \in\left(K_{A}\right)$ and $A K_{A} \perp B C$ and it in-tangent for (I) at A_{1}, similary we have B_{1}, C_{1}.
a) Prove that $A A_{1}, B B_{1}, C C_{1}$ are concurrent, called point-concurrent is P.
b) Assume circles $\left(J_{A}\right),\left(J_{B}\right),\left(J_{C}\right)$ are symmetry for excircles $\left(I_{A}\right),\left(I_{B}\right),\left(I_{C}\right)$ across midpoints of $B C, C A, A B$,resp. Prove that $P_{P /\left(J_{A}\right)}=P_{P /\left(J_{B}\right)}=P_{P /\left(J_{C}\right)}$.

Note. If $(O ; R)$ is a circle and M is a point then $P_{M /(O)}=O M^{2}-R^{2}$.
3 Given a triangle $A B C$. Find the minimum of

$$
\frac{\cos ^{2} \frac{A}{2} \cos ^{2} \frac{B}{2}}{\cos ^{2} \frac{C}{2}}+\frac{\cos ^{2} \frac{B}{2} \cos ^{2} \frac{C}{2}}{\cos ^{2} \frac{A}{2}}+\frac{\cos ^{2} \frac{C}{2} \cos ^{2} \frac{A}{2}}{\cos ^{2} \frac{B}{2}} .
$$

Day 2

4 Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all real x we have

$$
f(x)=f\left(x^{2}+\frac{x}{3}+\frac{1}{9}\right) .
$$

5 Let $A \subset\{1,2, \ldots, 4014\},|A|=2007$, such that a does not divide b for all distinct elements $a, b \in A$. For a set X as above let us denote with m_{X} the smallest element in X. Find $\min m_{A}$ (for all A with the above properties).

6 Let $A_{1} A_{2} \ldots A_{9}$ be a regular 9 -gon. Let $\left\{A_{1}, A_{2}, \ldots, A_{9}\right\}=S_{1} \cup S_{2} \cup S_{3}$ such that $\left|S_{1}\right|=\left|S_{2}\right|=$ $\left|S_{3}\right|=3$. Prove that there exists $A, B \in S_{1}, C, D \in S_{2}, E, F \in S_{3}$ such that $A B=C D=E F$ and $A \neq B, C \neq D, E \neq F$.

