

AoPS Community

Pan African 2017

www.artofproblemsolving.com/community/c476211 by tchebytchev

– Day 1

Problem 1 We consider the real sequence (x_n) defined by $x_0 = 0, x_1 = 1$ and $x_{n+2} = 3x_{n+1} - 2x_n$ for n = 0, 1, ...

We define the sequence (y_n) by $y_n = x_n^2 + 2^{n+2}$ for every non negative integer n. Prove that for every n > 0, y_n is the square of an odd integer

Problem 2 Let x, y, and z be positive real numbers such that xy + yz + zx = 3xyz. Prove that

$$x^{2}y + y^{2}z + z^{2}x \ge 2(x + y + z) - 3.$$

In which cases do we have equality?

Problem 3 Let *n* be a positive integer.

- Find, in terms of *n*, the number of pairs (x, y) of positive integers that are solutions of the equation :

$$x^2 - y^2 = 10^2 \cdot 30^{2n}$$

- Prove further that this number is never a square

Day 2

Problem 4 Find all the real numbers x such that $\frac{1}{[x]} + \frac{1}{[2x]} = \{x\} + \frac{1}{3}$ where [x] denotes the integer part of x and $\{x\} = x - [x]$. For example, $[2.5] = 2, \{2.5\} = 0.5$ and $[-1.7] = -2, \{-1.7\} = 0.3$

Problem 5 The numbers from 1 to 2017 are written on a board. Deka and Farid play the following game

each of them, on his turn, erases one of the numbers. Anyone who erases a multiple of 2, 3 or 5 loses and the game is over. Is there a winning strategy for Deka ?

Problem 6 Let ABC be a triangle with H its orthocenter. The circle with diameter [AC] cuts the circumcircle of triangle ABH at K. Prove that the point of intersection of the lines CK and BH is the midpoint of the segment [BH]

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.