AoPS Community

Pan African 2017

www.artofproblemsolving.com/community/c476211
by tchebytchev

- Day 1

Problem 1 We consider the real sequence $\left(x_{n}\right)$ defined by $x_{0}=0, x_{1}=1$ and $x_{n+2}=3 x_{n+1}-2 x_{n}$ for $n=0,1, \ldots$
We define the sequence $\left(y_{n}\right)$ by $y_{n}=x_{n}^{2}+2^{n+2}$ for every non negative integer n. Prove that for every $n>0, y_{n}$ is the square of an odd integer

Problem 2 Let x, y, and z be positive real numbers such that $x y+y z+z x=3 x y z$. Prove that

$$
x^{2} y+y^{2} z+z^{2} x \geq 2(x+y+z)-3 .
$$

In which cases do we have equality?
Problem 3 Let n be a positive integer.

- Find, in terms of n, the number of pairs (x, y) of positive integers that are solutions of the equation :

$$
x^{2}-y^{2}=10^{2} \cdot 30^{2 n}
$$

- Prove further that this number is never a square

- Day 2

Problem 4 Find all the real numbers x such that $\frac{1}{[x]}+\frac{1}{[2 x]}=\{x\}+\frac{1}{3}$ where $[x]$ denotes the integer part of x and $\{x\}=x-[x]$.
For example, $[2.5]=2,\{2.5\}=0.5$ and $[-1.7]=-2,\{-1.7\}=0.3$
Problem 5 The numbers from 1 to 2017 are written on a board. Deka and Farid play the following game :
each of them, on his turn, erases one of the numbers. Anyone who erases a multiple of 2,3 or 5 loses and the game is over. Is there a winning strategy for Deka?

Problem 6 Let $A B C$ be a triangle with H its orthocenter. The circle with diameter $[A C]$ cuts the circumcircle of triangle $A B H$ at K. Prove that the point of intersection of the lines $C K$ and $B H$ is the midpoint of the segment $[B H]$

