Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 2008

www.artofproblemsolving.com/community/c4763
by April, mr.danh, TTsphn

Day 1

1 On the plane, given an angle $x O y$. M be a mobile point on ray $O x$ and N a mobile point on ray $O y$. Let d be the external angle bisector of angle $x O y$ and I be the intersection of d with the perpendicular bisector of $M N$. Let P, Q be two points lie on d such that $I P=I Q=I M=I N$, and let K the intersection of $M Q$ and $N P$.

1. Prove that K always lie on a fixed line.
2. Let d_{1} line perpendicular to $I M$ at M and d_{2} line perpendicular to $I N$ at N. Assume that there exist the intersections E, F of d_{1}, d_{2} from d. Prove that $E N, F M$ and $O K$ are concurrent.

2 Find all values of the positive integer m such that there exists polynomials $P(x), Q(x), R(x, y)$ with real coefficient satisfying the condition: For every real numbers a, b which satisfying $a^{m}-$ $b^{2}=0$, we always have that $P(R(a, b))=a$ and $Q(R(a, b))=b$.

3 Let an integer $n>3$. Denote the set $T=\{1,2, \ldots, n\}$. A subset S of T is called wanting set if S has the property: There exists a positive integer c which is not greater than $\frac{n}{2}$ such that $\left|s_{1}-s_{2}\right| \neq c$ for every pairs of arbitrary elements $s_{1}, s_{2} \in S$. How many does a wanting set have at most are there?

Day 2

$1 \quad$ Let m and n be positive integers. Prove that $6 m \mid(2 m+3)^{n}+1$ if and only if $4 m \mid 3^{n}+1$
2 Let k be a positive real number. Triangle ABC is acute and not isosceles, O is its circumcenter and $A D, B E, C F$ are the internal bisectors. On the rays $A D, B E, C F$, respectively, let points L, M, N such that $\frac{A L}{A D}=\frac{B M}{B E}=\frac{C N}{C F}=k$. Denote $\left(O_{1}\right),\left(O_{2}\right),\left(O_{3}\right)$ be respectively the circle through L and touches OA at A , the circle through M and touches OB at B , the circle through N and touches OC at C.

1) Prove that when $k=\frac{1}{2}$, three circles $\left(O_{1}\right),\left(O_{2}\right),\left(O_{3}\right)$ have exactly two common points, the centroid G of triangle ABC lies on that common chord of these circles.
2) Find all values of k such that three circles $\left(O_{1}\right),\left(O_{2}\right),\left(O_{3}\right)$ have exactly two common points

3 Consider the set $M=\{1,2, \ldots, 2008\}$. Paint every number in the set M with one of the three colors blue, yellow, red such that each color is utilized to paint at least one number. Define two sets:
$S_{1}=\left\{(x, y, z) \in M^{3} \mid x, y, z\right.$ have the same color and 2008|(x+y+z)\}; $S_{2}=\left\{(x, y, z) \in M^{3} \mid\right.$ x, y, z have three pairwisely different colors and 2008| $(x+y+z)\}$.

Prove that $2\left|S_{1}\right|>\left|S_{2}\right|$ (where $|X|$ denotes the number of elements in a set X).

