

AoPS Community

2009 Vietnam Team Selection Test

Vietnam Team Selection Test 2009

www.artofproblemsolving.com/community/c4764 by tdl, thaithuan_GC, Namdung, quykhtn-qa1, April

Day	1
-----	---

1	Let an acute triangle ABC with curcumcircle (O) . Call A_1, B_1, C_1 are foots of perpendicular line from A, B, C to opposite side. A_2, B_2, C_2 are reflect points of A_1, B_1, C_1 over midpoints of BC, CA, AB respectively. Circle $(AB_2C_2), (BC_2A_2), (CA_2B_2)$ cut (O) at A_3, B_3, C_3 respectively. Prove that: A_1A_3, B_1B_3, C_1C_3 are concurrent.
2	Let a polynomial $P(x) = rx^3 + qx^2 + px + 1$ $(r > 0)$ such that the equation $P(x) = 0$ has only one real root. A sequence (a_n) is defined by $a_0 = 1, a_1 = -p, a_2 = p^2 - q, a_{n+3} = -pa_{n+2} - qa_{n+1} - ra_n$. Prove that (a_n) contains an infinite number of nagetive real numbers.
3	Let a, b be positive integers. a, b and a.b are not perfect squares.
	Prove that at most one of following equations
	$ax^2 - by^2 = 1$ and $ax^2 - by^2 = -1$
	has solutions in positive integers.
Day 2	
1	Let a, b, c be positive numbers. Find k such that: $(k + \frac{a}{b+c})(k + \frac{b}{c+a})(k + \frac{c}{a+b}) \ge (k + \frac{1}{2})^3$
2	Let a circle (O) with diameter AB . A point M move inside (O) . Internal bisector of \widehat{AMB} cut (O) at N , external bisector of \widehat{AMB} cut NA , NB at P,Q . AM , BM cut circle with diameter NQ , NP at R, S . Prove that: median from N of triangle NRS pass over a fix point.
3	There are $6n+4$ mathematicians participating in a conference which includes $2n+1$ meetings. Each meeting has one round table that suits for 4 people and n round tables that each table suits for 6 people. We have known that two arbitrary people sit next to or have opposite places doesn't exceed one time. 1. Determine whether or not there is the case $n = 1$. 2. Determine whether or not there is the case $n > 1$.

Art of Problem Solving is an ACS WASC Accredited School.

1