Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 2009

www.artofproblemsolving.com/community/c4764
by tdl, thaithuan_GC, Namdung, quykhtn-qa1, April

Day 1

1 Let an acute triangle $A B C$ with curcumcircle (O). Call A_{1}, B_{1}, C_{1} are foots of perpendicular line from A, B, C to opposite side. A_{2}, B_{2}, C_{2} are reflect points of A_{1}, B_{1}, C_{1} over midpoints of $B C, C A, A B$ respectively. Circle $\left(A B_{2} C_{2}\right),\left(B C_{2} A_{2}\right),\left(C A_{2} B_{2}\right)$ cut (O) at A_{3}, B_{3}, C_{3} respectively. Prove that: $A_{1} A_{3}, B_{1} B_{3}, C_{1} C_{3}$ are concurent.

2 Let a polynomial $P(x)=r x^{3}+q x^{2}+p x+1(r>0)$ such that the equation $P(x)=0$ has only one real root. A sequence $\left(a_{n}\right)$ is defined by $a_{0}=1, a_{1}=-p, a_{2}=p^{2}-q, a_{n+3}=-p a_{n+2}-$ $q a_{n+1}-r a_{n}$.
Prove that $\left(a_{n}\right)$ contains an infinite number of nagetive real numbers.
3 Let a, b be positive integers. a, b and $\mathrm{a} . \mathrm{b}$ are not perfect squares.
Prove that at most one of following equations
$a x^{2}-b y^{2}=1$ and $a x^{2}-b y^{2}=-1$
has solutions in positive integers.

Day 2

1 Let a, b, c be positive numbers. Find k such that: $\left(k+\frac{a}{b+c}\right)\left(k+\frac{b}{c+a}\right)\left(k+\frac{c}{a+b}\right) \geq\left(k+\frac{1}{2}\right)^{3}$
2 Let a circle (O) with diameter $A B$. A point M move inside (O). Internal bisector of $\widehat{A M B}$ cut (O) at N, external bisector of $\widehat{A M B}$ cut $N A, N B$ at $P, Q . A M, B M$ cut circle with diameter $N Q, N P$ at R, S.
Prove that: median from N of triangle $N R S$ pass over a fix point.
3 There are $6 n+4$ mathematicians participating in a conference which includes $2 n+1$ meetings. Each meeting has one round table that suits for 4 people and n round tables that each table suits for 6 people. We have known that two arbitrary people sit next to or have opposite places doesn't exceed one time.

1. Determine whether or not there is the case $n=1$.
2. Determine whether or not there is the case $n>1$.
