AoPS Community

Vietnam Team Selection Test 2010

www.artofproblemsolving.com/community/c4765
by Love_Math1994

Day 1

1 Let n be a positive integer. Let T_{n} be a set of positive integers such that:

$$
T_{n}=\left\{11(k+h)+10\left(n^{k}+n^{h}\right) \mid(1 \leq k, h \leq 10)\right\}
$$

Find all n for which there don't exist two distinct positive integers $a, b \in T_{n}$ such that $a \equiv b$ $(\bmod 110)$

2 Let $A B C$ be a triangle with $\widehat{B A C} \neq 90^{\circ}$. Let M be the midpoint of $B C$. We choose a variable point D on $A M$. Let $\left(O_{1}\right)$ and $\left(O_{2}\right)$ be two circle pass through D and tangent to $B C$ at B and C. The line $B A$ and $C A$ intersect $\left(O_{1}\right),\left(O_{2}\right)$ at P, Q respectively.
a) Prove that tangent line at P on $\left(O_{1}\right)$ and Q on $\left(O_{2}\right)$ must intersect at S.
b) Prove that S lies on a fix line.

3 We call a rectangle of the size 1×2 a domino. Rectangle of the 2×3 removing two opposite (under center of rectangle) corners we call tetramino. These figures can be rotated.

It requires to tile rectangle of size 2008×2010 by using dominoes and tetraminoes. What is the minimal number of dominoes should be used?

Day 2

1 Let a, b, c be positive integers which satisfy the condition: $16(a+b+c) \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that

$$
\sum_{c y c}\left(\frac{1}{a+b+\sqrt{2 a+2 c}}\right)^{3} \leq \frac{8}{9}
$$

2 We have n countries. Each country have m persons who live in that country ($n>m>1$). We divide $m \cdot n$ persons into n groups each with m members such that there don't exist two persons in any groups who come from one country.
Prove that one can choose n people into one class such that they come from different groups and different countries.

3 Let S_{n} be sum of squares of the coefficient of the polynomial $(1+x)^{n}$. Prove that $S_{2 n}+1$ is not divisible by 3 .

