

AoPS Community

Vietnam Team Selection Test 2010

www.artofproblemsolving.com/community/c4765 by Love_Math1994

Day 1

1	Let n be a positive integer. Let T_n be a set of positive integers such that:
	$T_n = \{11(k+h) + 10(n^k + n^h) (1 \le k, h \le 10)\}$
	Find all <i>n</i> for which there don't exist two distinct positive integers $a, b \in T_n$ such that $a \equiv b \pmod{110}$
2	Let ABC be a triangle with $\widehat{BAC} \neq 90^{\circ}$. Let M be the midpoint of BC . We choose a variable point D on AM . Let (O_1) and (O_2) be two circle pass through D and tangent to BC at B and C . The line BA and CA intersect $(O_1), (O_2)$ at P, Q respectively.
	a) Prove that tangent line at P on (O_1) and Q on (O_2) must intersect at S.
	b) Prove that S lies on a fix line.
3	We call a rectangle of the size 1×2 a domino. Rectangle of the 2×3 removing two opposite (under center of rectangle) corners we call tetramino. These figures can be rotated.
	It requires to tile rectangle of size 2008×2010 by using dominoes and tetraminoes. What is the minimal number of dominoes should be used?
Day 2	2
1	Let a, b, c be positive integers which satisfy the condition: $16(a + b + c) \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$. Prove that
	$\sum_{cyc} \left(\frac{1}{a+b+\sqrt{2a+2c}} \right)^3 \le \frac{8}{9}$

- 2 We have *n* countries. Each country have *m* persons who live in that country (n > m > 1). We divide $m \cdot n$ persons into *n* groups each with *m* members such that there don't exist two persons in any groups who come from one country. Prove that one can choose *n* people into one class such that they come from different groups and different countries.
- **3** Let S_n be sum of squares of the coefficient of the polynomial $(1 + x)^n$. Prove that $S_{2n} + 1$ is not divisible by 3.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.