Art of Problem Solving

AoPS Community

2011 Vietnam Team Selection Test

Vietnam Team Selection Test 2011

www.artofproblemsolving.com/community/c4766
by Potla

1 A grasshopper rests on the point $(1,1)$ on the plane. Denote by O, the origin of coordinates. From that point, it jumps to a certain lattice point under the condition that, if it jumps from a point A to B, then the area of $\triangle A O B$ is equal to $\frac{1}{2}$. (a) Find all the positive integral poijnts (m, n) which can be covered by the grasshopper after a finite number of steps, starting from $(1,1)$. (b) If a point (m, n) satisfies the above condition, then show that there exists a certain path for the grasshopper to reach (m, n) from $(1,1)$ such that the number of jumps does not exceed $|m-n|$.
$2 A$ is a point lying outside a circle (O). The tangents from A drawn to (O) meet the circle at B, C. Let P, Q be points on the rays $A B, A C$ respectively such that $P Q$ is tangent to (O). The parallel lines drawn through P, Q parallel to $C A, B A$, respectively meet $B C$ at E, F, respectively. (a) Show that the straight lines $E Q$ always pass through a fixed point M, and $F P$ always pass through a fixed point N. (b) Show that $P M \cdot Q N$ is constant.

3 Let n be a positive integer ≥ 3. There are n real numbers $x_{1}, x_{2}, \cdots x_{n}$ that satisfy:

$$
\left\{\begin{array}{l}
x_{1} \geq x_{2} \geq \cdots \geq x_{n} \\
x_{1}+x_{2}+\cdots+x_{n}=0 \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=n(n-1)
\end{array}\right.
$$

Find the maximum and minimum value of the sum $S=x_{1}+x_{2}$.
4 Let $\left\langle a_{n}\right\rangle_{n \geq 0}$ be a sequence of integers satisfying $a_{0}=1, a_{1}=3$ and $a_{n+2}=1+\left\lfloor\frac{a_{n+1}^{2}}{a_{n}}\right\rfloor \forall n \geq 0$. Prove that $a_{n} \cdot a_{n+2}-a_{n+1}^{2}=2^{n}$ for every natural number n.
$5 \quad$ Find all positive integers n such that $A=2^{n+2}\left(2^{n}-1\right)-8 \cdot 3^{n}+1$ is a perfect square.
6 Let n be an integer greater than 1. n pupils are seated around a round table, each having a certain number of candies (it is possible that some pupils don't have a candy) such that the sum of all the candies they possess is a multiple of n. They exchange their candies as follows: For each student's candies at first, there is at least a student who has more candies than the student sitting to his/her right side, in which case, the student on the right side is given a candy by that student. After a round of exchanging, if there is at least a student who has candies greater than the right side student, then he/she will give a candy to the next student sitting to his/her right side. Prove that after the exchange of candies is completed (ie, when it reaches equilibrium), all students have the same number of candies.

