AoPS Community

National Science Olympiad 2017

www.artofproblemsolving.com/community/c476861
by chaotic_iak

- Day 1
$1 \quad A B C D$ is a parallelogram. g is a line passing A. Prove that the distance from C to g is either the sum or the difference of the distance from B to g, and the distance from D to g.

2 Five people are gathered in a meeting. Some pairs of people shakes hands. An ordered triple of people (A, B, C) is a trio if one of the following is true:
$-A$ shakes hands with B, and B shakes hands with C, or -A doesn't shake hands with B, and B doesn't shake hands with C.

If we consider (A, B, C) and (C, B, A) as the same trio, find the minimum possible number of trios.

3 A positive integer d is special if every integer can be represented as $a^{2}+b^{2}-d c^{2}$ for some integers a, b, c.
-Find the smallest positive integer that is not special.
-Prove 2017 is special.
4 Determine all pairs of distinct real numbers (x, y) such that both of the following are true:
$-x^{100}-y^{100}=2^{99}(x-y)$
$-x^{200}-y^{200}=2^{199}(x-y)$

- Day 2

5 A polynomial P has integral coefficients, and it has at least 9 different integral roots. Let n be an integer such that $|P(n)|<2017$. Prove that $P(n)=0$.

6 Find the number of positive integers n not greater than 2017 such that n divides $20^{n}+17 k$ for some positive integer k.

7 Let $A B C D$ be a parallelogram. E and F are on $B C, C D$ respectively such that the triangles $A B E$ and $B C F$ have the same area. Let $B D$ intersect $A E, A F$ at M, N respectively. Prove
there exists a triangle whose side lengths are $B M, M N, N D$.
8 A field is made of 2017×2017 unit squares. Luffy has k gold detectors, which he places on some of the unit squares, then he leaves the area. Sanji then chooses a 1500×1500 area, then buries a gold coin on each unit square in this area and none other. When Luffy returns, a gold detector beeps if and only if there is a gold coin buried underneath the unit square it's on. It turns out that by an appropriate placement, Luffy will always be able to determine the 1500×1500 area containing the gold coins by observing the detectors, no matter how Sanji places the gold coins. Determine the minimum value of k in which this is possible.

