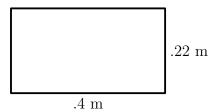


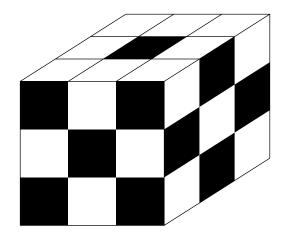
AoPS Community 1987 AMC 8


AMC 8 1987

www.artofproblemsolving.com/community/c4770

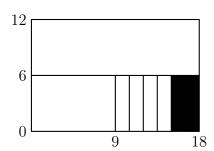
by Binomial-theorem, rrusczyk

- 1 .4 + .02 + .006 =
 - (A) .012
- (B) .066
- (C) .12
- (D) .24
- **(E)**.426


- $\frac{2}{25} =$
 - (A) .008
- **(B)** .08
- (C) .8
- (D)1.25
- **(E)** 12.5
- 2(81 + 83 + 85 + 87 + 89 + 91 + 93 + 95 + 97 + 99) =
 - **(A)** 1600
- **(B)** 1650
- **(C)** 1700
- **(D)** 1750
- **(E)** 1800
- ${\bf 4} \qquad {\bf Martians\ measure\ angles\ in\ clerts.\ There\ are\ 500\ clerts\ in\ a\ full\ circle.\ How\ many\ clerts\ are\ there\ in\ a\ right\ angle? }$
 - **(A)** 90
- **(B)** 100
- **(C)** 125
- **(D)** 180
- **(E)** 250
- 5 The area of the rectangular region is

- (A) $.088 \text{ m}^2$
- (B) $.62 \text{ m}^2$
- (C) $.88 \text{ m}^2$
- (D) 1.24 m²

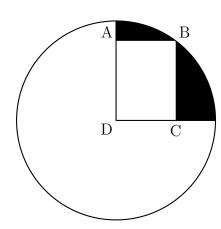
(E) 3


- (E) 4.22 m²
- The smallest product one could obtain by multiplying two numbers in the set $\{-7, -5, -1, 1, 3\}$ is
 - (A) -35
- (B) -21
- (C) -15
- (D) -1
- 7 The large cube shown is made up of 27 identical sized smaller cubes. For each face of the large cube, the opposite face is shaded the same way. The total number of smaller cubes that must have at least one face shaded is

- **(A)** 10
- **(B)** 16
- (C) 20
- **(D)** 22
- **(E)** 24
- If A and B are nonzero digits, then the number of digits (not necessarily different) in the sum of 8 the three whole numbers is

3

- (A) 4
- **(B)** 5
- (C) 6
- **(D)** 9
- (E) depends on the values of A and B
- When finding the sum $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}$, the least common denominator used is 9
 - (A) 120
- **(B)** 210
- (C) 420
- **(D)** 840
- **(E)** 5040
- 10 4(299) + 3(299) + 2(299) + 298 =
 - (A) 2889
- **(B)** 2989
- (C) 2991
- **(D)** 2999
- **(E)** 3009
- The sum $2\frac{1}{7} + 3\frac{1}{2} + 5\frac{1}{19}$ is between 11
 - (A) $10 \text{ and } 10\frac{1}{2}$ (B) $10\frac{1}{2} \text{ and } 11$
- (C) 11 and $11\frac{1}{2}$ (D) $11\frac{1}{2}$ and 12 (E) 12 and $12\frac{1}{2}$
- 12 What fraction of the large 12 by 18 rectangular region is shaded?



- (A) $\frac{1}{108}$
- (B) $\frac{1}{12}$ (C) $\frac{1}{12}$
- (D) $\frac{2}{9}$
- (E) $\frac{1}{3}$
- 13 Which of the following fractions has the largest value?
 - (A) $\frac{3}{7}$
- (B) $\frac{4}{9}$
- (C) $\frac{17}{25}$
- (D) $\frac{100}{201}$
- (E) $\frac{151}{201}$
- 14 A computer can do 10,000 additions per second. How many additions can it do in one hour?
 - (A) 6 million
- (B) 36 million
- (C) 60 million
- (D) 216 million
- (E) 360 million
- 15 The sale ad read: "Buy three tires at the regular price and get the fourth tire for \$3." Sam paid \$240 for a set of four tires at the sale. What was the regular price of one tire?
 - (A) 59.25 dollars
- (B) 60 dollars
- (C) 70 dollars
- (D) 79 dollars
- (E) 80 dollars
- 16 Joyce made 12 of her first 30 shots in the first three games of this basketball game, so her seasonal shooting average was 40%. In her next game, she took 10 shots and raised her seasonal shooting average to 50%. How many of these 10 shots did she make?
 - (A) 2
- **(B)** 3
- (C) 5
- (D) 6
- **(E)** 8
- 17 Abby, Bret, Carl, and Dana are seated in a row of four seats numbered #1 to #4. Joe looks at them and says:
 - "Bret is next to Carl."
 - "Abby is between Bret and Carl."

However each one of Joe's statements is false. Bret is actually sitting in seat#3. Who is sitting in seat#2?

- (A) Abby
- (B) Bret
- (C) Carl
- (D) Dana
- (E) There is not enough information to be sure.
- 18 Half the people in a room left. One third of those remaining started to dance. There were then 12 people who were not dancing. The original number of people in the room was
 - (A) 24
- **(B)** 30
- (C) 36
- (D) 42
- (E) 72

- A calculator has a squaring key x^2 which replaces the current number displayed with its square. For example, if the display is 000003 and the x^2 key is depressed, then the display becomes 000009. If the display reads 000002, how many times must you depress the x^2 key to produce a displayed number greater than 500?
 - (A) 4
- **(B)** 5
- (C) 8
- **(D)** 9
- **(E)** 250
- "If a whole number n is not prime, then the whole number n-2 is not prime." A value of n which shows this statement to be false is
 - (A) 9
- **(B)** 12
- **(C)** 13
- **(D)** 16
- **(E)** 23
- Suppose n^* means $\frac{1}{n}$, the reciprocal of n. For example, $5^* = \frac{1}{5}$. How many of the following statements are true?
 - i) $3^* + 6^* = 9^*$
 - ii) $6^* 4^* = 2^*$
 - iii) $2^* \cdot 6^* = 12^*$
 - iv) $10^* \div 2^* = 5^*$
 - **(A)** 0
- **(B)** 1
- (C) 2
- (D) 3
- **(E)** 4
- ABCD is a rectangle, D is the center of the circle, and B is on the circle. If AD=4 and CD=3, then the area of the shaded region is between

- (A) 4 and 5
- (B) 5 and 6
- (C) 6 and 7
- (D) 7 and 8
- (E) 8 and 9
- Assume the adjoining chart shows the $1980\,\mathrm{U.S.}$ population, in millions, for each region by ethnic group. To the nearest percent, what percent of the U.S. Black population lived in the South?

	NE	MW	South	West
White	42	52	57	35
Black	5	5	15	2
Asian	1	1	1	3
Other	1	1	2	4

(A) 20%

(B) 25%

(C) 40%

(D) 56%

(E) 80%

24 A multiple choice examination consists of 20 questions. The scoring is +5 for each correct answer, -2 for each incorrect answer, and 0 for each unanswered question. John's score on the examination is 48. What is the maximum number of questions he could have answered correctly?

(A) 9

(B) 10

(C) 11

(D) 12

(E) 16

25 Ten balls numbered 1 to 10 are in a jar. Jack reaches into the jar and randomly removes one of the balls. Then Jill reaches into the jar and randomly removes a different ball. The probability that the sum of the two numbers on the balls removed is even is

(A) $\frac{4}{9}$

(B) $\frac{9}{19}$

(C) $\frac{1}{2}$ (D) $\frac{10}{19}$

(E) $\frac{5}{9}$

https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright @ Mathematical Association of America (http://maa.org).