

AMC 12/AHSME 1974

www.artofproblemsolving.com/community/c4838 by dft, ernie, Brut3Forc3, rrusczyk

1	If $x \neq 0$ or 4 and $y \neq 0$ or 6 , then $\frac{2}{x} + \frac{3}{y} = \frac{1}{2}$ is equivalent to
	(A) $4x + 3y = xy$ (B) $y = \frac{4x}{6-y}$ (C) $\frac{x}{2} + \frac{y}{3} = 2$ (D) $\frac{4y}{y-6} = x$ (E) none of these
2	Let x_1 and x_2 be such that $x_1 \neq x_2$ and $3x_i^2 - hx_i = b$, $i = 1, 2$. Then $x_1 + x_2$ equals
	(A) $-\frac{h}{3}$ (B) $\frac{h}{3}$ (C) $\frac{b}{3}$ (D) $2b$ (E) $-\frac{b}{3}$
3	The coefficient of x^7 in the polynomial expansion of
	$(1+2x-x^2)^4$
	is
	(A) -8 (B) 12 (C) 6 (D) -12 (E) none of these
4	What is the remainder when $x^{51} + 51$ is divided by $x + 1$?
	(A) 0 (B) 1 (C) 49 (D) 50 (E) 51
5	Given a quadrilateral <i>ABCD</i> inscribed in a circle with side <i>AB</i> extended beyond <i>B</i> to point <i>E</i> , if $\angle BAD = 92^{\circ}$ and $\angle ADC = 68^{\circ}$, find $\angle EBC$.
	(A) 66° (B) 68° (C) 70° (D) 88° (E) 92°
6	For positive real numbers x and y define $x * y = \frac{x \cdot y}{x + y}$; then
	(A) "*" is commutative but not associative
	(C) "*" is neither commutative nor associative
	(D) "*" is commutative and associative (E) none of these
7	A town's population increased by $1,200$ people, and then this new population decreased by 11% . The town now had 32 less people than it did before the $1,200$ increase. What is the original population?

(A) 1,200 (B) 11,200 (C) 9,968 (D) 10,000 (E) none of these

1974 AMC 12/AHSME

8	What is the smallest prime number dividing the sum $3^{11} + 5^{13}$? (A) 2 (B) 3 (C) 5 (D) $3^{11} + 5^{13}$ (E) none of these					
9	The integers greater than one are arranged in five columns as follows:					
	2 3 4 5 9 8 7 6 10 11 12 12					
	17 16 15 14					
	(Four consecutive integers appear in each row; in the first, third and other odd numbered rows, the integers appear in the last four columns and increase from left to right; in the second, fourth and other even numbered rows, the integers appear in the first four columns and increase from right to left.)					
	In which column will the number $1,000$ fall?					
	(A) first (B) second (C) third (D) fourth (E) fifth					
10	What is the smallest integral value of k such that					
	$2x(kx - 4) - x^2 + 6 = 0$					
	has no real roots?					
	(A) -1 (B) 2 (C) 3 (D) 4 (E) 5					
11	If (a, b) and (c, d) are two points on the line whose equation is $y = mx + k$, then the distance between (a, b) and (c, d) , in terms of a, c , and m , is (A) $ a - c \sqrt{1 + m^2}$ (B) $ a + c \sqrt{1 + m^2}$ (C) $\frac{ a - c }{\sqrt{1 + m^2}}$ (D) $ a - c (1 + m^2)$ (E) $ a - c $ m					
12	If $g(x) = 1 - x^2$ and $f(g(x)) = \frac{1 - x^2}{x^2}$ when $x \neq 0$, then $f(1/2)$ equals (A) $3/4$ (B) 1 (C) 3 (D) $\sqrt{2}/2$ (E) $\sqrt{2}$					
13	Which of the following is equivalent to "If P is true, then Q is false."? (A) "P is true or Q is false." (B) "If Q is false then P is true." (C) "If P is false then Q is true (D) "If Q is true then P is false." (E) "If Q is true then P is true."					
14	Which statement is correct? (A) If $x < 0$, then $x^2 > x$. (B) If $x^2 > 0$, then $x > 0$. (C) If $x^2 > x$, then $x > 0$. (D) If x x , then $x < 0$. (E) If $x < 1$, then $x^2 < x$.					

15	If $x < -2$ then $ 1 - 1 + x $ equals					
	(A) $2 + x$ (B) $-2 - x$ (C) x (D) $-x$ (E) -2					
16	A circle of radius r is inscribed in a right isosceles triangle, and a circle of radius R is circums scribed about the triangle. Then R/r equals (A) $1 + \sqrt{2}$ (B) $\frac{2+\sqrt{2}}{2}$ (C) $\frac{\sqrt{2}-1}{2}$ (D) $\frac{1+\sqrt{2}}{2}$ (E) $2(2-\sqrt{2})$					
17	If $i^2 = -1$, then $(1+i)^{20} - (1-i)^{20}$ equals					
	(A) -1024 (B) $-1024i$ (C) 0 (D) 1024 (E) $1024i$					

19 In the adjoining figure ABCD is a square and CMN is an equilateral triangle. If the area of ABCD is one square inch, then the area of CMN in square inches is

22	The minimum of $\sin \frac{A}{2} - \sqrt{3} \cos \frac{A}{2}$ is attained where the second state of the				hen A is
	(A) -180°	(B) 60°	(C) 120°	(D) 0°	(E) none of these

23 In the adjoining figure TP and T'Q are parallel tangents to a circle of radius r, with T and T' the points of tangency. PT''Q is a third tangent with T'' as point of tangency. If TP = 4 and T'Q = 9 then r is

(A) 25/6 (B) 6 (C) 25/4(D) a number other than 25/6, 6, 25/4(E) not determinable from the given information

24 A fair die is rolled six times. The probability of rolling at least a five at least five times is

(A) $\frac{13}{729}$	(B) $\frac{12}{729}$	(C) $\frac{2}{729}$	(D) $\frac{3}{729}$	(E) none of these

25 In parallelogram *ABCD* of the accompanying diagram, line *DP* is drawn bisecting *BC* at *N* and meeting *AB* (extended) at *P*. From vertex *C*, line *CQ* is drawn bisecting side *AD* at *M* and meeting *AB* (extended) at *Q*. Lines *DP* and *CQ* meet at *O*. If the area of parallelogram *ABCD* is *k*, then the area of the triangle *QPO* is equal to

AoPS Community 1974 AMC 12/AHSME (B) $\frac{6k}{5}$ (C) $\frac{9k}{8}$ (D) $\frac{5k}{4}$ **(A)** *k* **(E)** 2k The number of distinct positive integral divisors of $(30)^4$ excluding 1 and $(30)^4$ is 26 (A) 100 **(B)** 125 (C) 123 (D) 30 (E) none of these 27 If f(x) = 3x + 2 for all real x, then the statement: "|f(x) + 4| < a whenever |x + 2| < b and a > 0 and b > 0" is true when (A) b < a/3**(B)** b > a/3(C) a < b/3(D) a > b/3(E) The statement is never true. 28 Which of the following is satisfied by all numbers x of the form $x = \frac{a_1}{3} + \frac{a_2}{3^2} + \dots + \frac{a_{25}}{3^{25}},$ where a_1 is 0 or 2, a_2 is 0 or 2,..., a_{25} is 0 or 2? (A) $0 \le x < 1/3$ (B) $1/3 \le x < 2/3$ (C) $2/3 \le x < 1$ (D) $0 \le x < 1/3$ or $2/3 \le x < 1$ (E) $1/2 \le x \le 3/4$ 29 For p = 1, 2, ..., 10 let S_p be the sum of the first 40 terms of the arithmetic progression whose first term is p and whose common difference is 2p-1; then $S_1 + S_2 + \cdots + S_{10}$ is **(A)** 80000 **(B)** 80200 **(C)** 80400 **(D)** 80600 **(E)** 80800 30 A line segment is divided so that the lesser part is to the greater part as the greater part is to the whole. If R is the ratio of the lesser part to the greater part, then the value of $B^{[R^{(R^2+R^{-1})}+R^{-1}]} + B^{-1}$ is (C) R^{-1} (D) $2 + R^{-1}$ **(A)** 2 (E) 2 + R**(B)** 2*R* https://data.artofproblemsolving.com/images/maa_logo.png These problems are copy-

right © Mathematical Association of America (http://maa.org).

🟟 AoPS Online 🟟 AoPS Academy 🐲 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.