

1981 AMC 12/AHSME

AMC 12/AHSME 1981

www.artofproblemsolving.com/community/c4845

by 4 everwise, Silverfalcon, chess 64, Tachyon Pulse, rrusczyk

1	If $\sqrt{x+2} = 2$, then $(x+2)^2$ equals (A) $\sqrt{2}$ (B) 2 (C) 4 (D) 8 (E) 16
2	Point <i>E</i> is on side <i>AB</i> of square <i>ABCD</i> . If <i>EB</i> has length one and <i>EC</i> has length two, then the area of the square is (A) $\sqrt{3}$ (B) $\sqrt{5}$ (C) 3 (D) $2\sqrt{3}$ (E) 5
3	For $x \neq 0$, $\frac{1}{x} + \frac{1}{2x} + \frac{1}{3x}$ equals (A) $\frac{1}{2x}$ (B) $\frac{1}{6}$ (C) $\frac{5}{6x}$ (D) $\frac{11}{6x}$ (E) $\frac{1}{6x^3}$
4	If three times the larger of two numbers is four times the smaller and the difference between the numbers is 8, the the larger of two numbers is (A) 16 (B) 24 (C) 32 (D) 44 (E) 52
5	In trapezoid $ABCD$, sides AB and CD are parallel, and diagonal BD and side AD have equal length. If $m \angle DBC = 110^{\circ}$ and $m \angle CBD = 30^{\circ}$, then $m \angle ADB =$ (A) 80° (B) 90° (C) 100° (D) 110° (E) 120°
6	If $\frac{x}{x-1} = \frac{y^2+2y-1}{y^2-2y-2}$, then x equals (A) $y^2 + 2y - 1$ (B) $y^2 + 2y - 2$ (C) $y^2 + 2y + 2$ (D) $y^2 + 2y + 1$ (E) $-y^2 - 2y + 1$
7	How many of the first one hundred positive integers are divisible by all of the numbers $2, 3, 4, 5$? (A) 0 (B) 1 (C) 2 (D) 3 (E) 4
8	For all positive numbers x, y, z the product $(x+y+z)^{-1}(x^{-1}+y^{-1}+z^{-1})(xy+yz+xz)^{-1}[(xy)^{-1}+(yz)^{-1}+(xz)^{-1}]$ equals (A) $x^{-2}y^{-2}z^{-2}$ (B) $x^{-2}+y^{-2}+z^{-2}$ (C) $(x+y+z)^{-1}$ (D) $\frac{1}{xyz}$ (E) $\frac{1}{xy+yz+xz}$
9	In the adjoining figure, PQ is a diagonal of the cube. If PQ has length a , then the surface area of the cube is (A) $2a^2$ (B) $2\sqrt{2}a^2$ (C) $2\sqrt{3}a^2$ (D) $3\sqrt{3}a^2$ (E) $6a^2$
10	The lines <i>L</i> and <i>K</i> are symmetric to each other with respect to the line $y = x$. If the equation of the line <i>L</i> is $y = ax + b$ with $a \neq 0$ and $b \neq 0$, then the equation of <i>K</i> is $y =$ (A) $\frac{1}{a}x + b$ (B) $-\frac{1}{a}x + b$ (C) $\frac{1}{a}x - \frac{b}{a}$ (D) $\frac{1}{a}x + \frac{b}{a}$ (E) $\frac{1}{a}x - \frac{b}{a}$

If p, q and M are positive numbers and $q < 100$, then the number obtained by increasing M by $p\%$ and decreasing the result by $q\%$ exceeds M if and only if (A) $p > q$ (B) $p > \frac{q}{100-q}$ (C) $p > \frac{q}{1-q}$ (D) $p > \frac{100q}{100+q}$ (E) $p > \frac{100q}{100-q}$ Suppose that at the end of any year, a unit of money has lost 10% of the value it had at the beginning of that year. Find the smallest integer n such that after n years, the money will have lost at least 90% of its value. (To the nearest thousandth $\log_{10} 3 = .477.$) (A) 14 (B) 16 (C) 18 (D) 20 (E) 22 In a geometric sequence of real numbers, the sum of the first two terms is 7, and the sum of the first 6 terms is 91. The sum of the first 4 terms is (A) 28 (B) 32 (C) 35 (D) 49 (E) 84 If $b > 1, x > 0$ and $(2x)^{\log_b 2} - (3x)^{\log_b 3} = 0$, then x is
Suppose that at the end of any year, a unit of money has lost 10% of the value it had at the beginning of that year. Find the smallest integer <i>n</i> such that after <i>n</i> years, the money will have lost at least 90% of its value. (To the nearest thousandth $\log_{10} 3 = .477$.) (A) 14 (B) 16 (C) 18 (D) 20 (E) 22 In a geometric sequence of real numbers, the sum of the first two terms is 7, and the sum of the first 6 terms is 91. The sum of the first 4 terms is (A) 28 (B) 32 (C) 35 (D) 49 (E) 84 If $b > 1$, $x > 0$ and $(2x)^{\log_b 2} - (3x)^{\log_b 3} = 0$, then x is
In a geometric sequence of real numbers, the sum of the first two terms is 7, and the sum of the first 6 terms is 91. The sum of the first 4 terms is (A) 28 (B) 32 (C) 35 (D) 49 (E) 84 If $b > 1$, $x > 0$ and $(2x)^{\log_b 2} - (3x)^{\log_b 3} = 0$, then x is
If $b > 1$, $x > 0$ and $(2x)^{\log_b 2} - (3x)^{\log_b 3} = 0$, then x is
(A) $\frac{1}{216}$ (B) $\frac{1}{6}$ (C) 1 (D) 6 (E) not uniquely determined
The base three representation of x is
12112211122211112222.
The first digit (on the left) of the base nine representation of x is (A) 1 (B) 2 (C) 3 (D) 4 (E) 5
The function f is not defined for $x = 0$, but, for all non-zero real numbers x , $f(x) + 2f\left(\frac{1}{x}\right) = 3x$. The equation $f(x) = f(-x)$ is satisfied by
(A) exactly one real number (B) exactly two real numbers (C) no real numbers (D) infinitely many, (E) all non-zero real numbers
The number of real solutions to the equation
$\frac{x}{100} = \sin x$
is
(A) 61 (B) 62 (C) 63 (D) 64 (E) 65
In $\triangle ABC$, M is the midpoint of side BC, AN bisects $\angle BAC$, $BN \perp AN$ and θ is the measure of $\angle BAC$. If sides AB and AC have lengths 14 and 10 respectively then length MN equals

1981 AMC 12/AHSME

	B M C
	(A) 2 (B) $\frac{5}{2}$ (C) $\frac{5}{2} - \sin \theta$ (D) $\frac{5}{2} - \frac{1}{2} \sin \theta$ (E) $\frac{5}{2} - \frac{1}{2} \sin \left(\frac{1}{2}\theta\right)$
20	A ray of light originates from point <i>A</i> and and travels in a plane, being reflected <i>n</i> times between lines <i>AD</i> and <i>CD</i> , before striking a point <i>B</i> (which may be on <i>AD</i> or <i>CD</i>) perpendicularly and retracing its path to <i>A</i> . (At each point of reflection the light makes two equal angles as indicated in the adjoining figure. The figure shows the light path for $n = 3$.) If $\angle CDA = 8^\circ$, what is the largest value <i>n</i> can have? (A) 6 (B) 10 (C) 38 (D) 98 (E) There is no largest value.
21	In a triangle with sides of lengths a, b , and $c, (a + b + c)(a + b - c) = 3ab$. The measure of the angle opposite the side length c is (A) 15° (B) 30° (C) 45° (D) 60° (E) 150°
22	How many lines in a three dimensional rectangular coordiante system pass through four distinct points of the form (i, j, k) where i, j , and k are positive integers not exceeding four? (A) 60 (B) 64 (C) 72 (D) 76 (E) 100

23

_

1981 AMC 12/AHSME

Equilateral $\triangle ABC$ is inscribed in a circle. A second circle is tangent internally to the circumcircle at T and tangent to sides AB and AC at points P and Q. If side BC has length 12, then segment PQ has length

(A) 6 (B) $6\sqrt{3}$ (C) 8 (D) $8\sqrt{3}$ (E) 9

24 If θ is a constant such that $0 < \theta < \pi$ and $x + \frac{1}{x} = 2\cos\theta$. then for each positive integer *n*, $x^n + \frac{1}{x^n}$ equals (A) $2\cos\theta$ (B) $2^n\cos\theta$ (C) $2\cos^n\theta$ (D) $2\cos n\theta$ (E) $2^n\cos^n\theta$

25

A B D E C

In triangle *ABC* in the adjoining figure, *AD* and *AE* trisect $\angle BAC$. The lengths of *BD*, *DE* and *EC* are 2, 3, and 6, respectively. The length of the shortest side of $\triangle ABC$ is (A) $2\sqrt{10}$ (B) 11 (C) $6\sqrt{6}$ (D) 6 (E) not uniquely determined by the given information

- Alice, Bob, and Carol repeatedly take turns tossing a die. Alice begins; Bob always follows Alice; Carol always follows Bob; and Alice always follows Carol. Find the probability that Carol will be the first one to toss a six. (The probability of obtaining a six on any toss is ¹/₆, independent of the outcome of any other toss.)
 (A) ¹/₃
 (B) ²/₉
 (C) ⁵/₁₈
 (D) ²⁵/₉₁
 (E) ³⁶/₉₁
- 27 In the adjoining figure triangle ABC is inscribed in a circle. Point D lies on AC with $DC = 30^{\circ}$, and point G lies on BA with BG > GA. Side AB and side AC each have length equal to the length of chord DG, and $\angle CAB = 30^{\circ}$. Chord DG intersects sides AC and AB at E and F, respectively. The ratio of the area of $\triangle AFE$ to the area of $\triangle ABC$ is

1981 AMC 12/AHSME

(A)
$$\frac{2-\sqrt{3}}{3}$$
 (B) $\frac{2\sqrt{3}-3}{3}$ (C) $7\sqrt{3}-12$ (D) $3\sqrt{3}-5$ (E) $\frac{9-5\sqrt{3}}{3}$

- **28** Consider the set of all equations $x^3 + a_2x^2 + a_1x + a_0 = 0$, where a_2 , a_1 , a_0 are real constants and $|a_i| < 2$ for i = 0, 1, 2. Let r be the largest positive real number which satisfies at least one of these equations. Then (A) $1 < r < \frac{3}{2}$ (B) $\frac{3}{2} < r < 2$ (C) $2 < r < \frac{5}{2}$ (D) $\frac{5}{2} < r < 3$ (E) $3 < r < \frac{7}{2}$
- **29** If a > 1, then the sum of the real solutions of

$$\sqrt{a - \sqrt{a + x}} = x$$

is equal to

(A)
$$\sqrt{a} - 1$$
 (B) $\frac{\sqrt{a} - 1}{2}$ (C) $\sqrt{a - 1}$ (D) $\frac{\sqrt{a - 1}}{2}$ (E) $\frac{\sqrt{4a - 3} - 1}{2}$

30 If *a*, *b*, *c*, and *d* are the solutions of the equation $x^4 - bx - 3 = 0$, then an equation whose solutions are

$$\frac{a+b+c}{d^2}, \frac{a+b+a}{c^2}, \frac{a+c+a}{b^2}, \frac{b+c+a}{a^2}$$
is
(A) $3x^4 + bx + 1 = 0$
(B) $3x^4 - bx + 1 = 0$
(C) $3x^4 + bx^3 - 1 = 0$ (D) $3x^4 - bx^3 - 1 = 0$
(E) none of these

 https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

🟟 AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.