AoPS Community

AMC 12/AHSME 1991

www.artofproblemsolving.com/community/c4855
by jeffq, rrusczyk

1 If for any three distinct numbers a, b and c we define

$$
a, b, c=\frac{c+a}{c-b},
$$

then $1,-2,-3=$
(A) -2
(B) $-\frac{2}{5}$
(C) $-\frac{1}{4}$
(D) $\frac{2}{5}$
(E) 2
$2 \quad|3-\pi|=$
(A) $\frac{1}{7}$
(B) 0.14
(C) $3-\pi$
(D) $3+\pi$
(E) $\pi-3$
$3 \quad\left(4^{-1}-3^{-1}\right)^{-1}=$
(A) -12
(B) -1
(C) $\frac{1}{12}$
(D) 1
(E) 12

4 Which of the following triangles cannot exist?
(A) An acute isosceles triangle (B) An isosceles right triangle (C) An obtuse right triangle (D) A scalene righ (E) A scalene obtuse triangle

5 In the arrow-shaped polygon [see figure], the angles at vertices A, C, D, E and F are right angles, $B C=F G=5, C D=F E=20, D E=10$, and $A B=A G$. The area of the polygon is closest to

(A) 288
(B) 291
(C) 294
(D) 297
(E) 300

6 If $x \geq 0$, then $\sqrt{x \sqrt{x \sqrt{x}}}=$
(A) $x \sqrt{x}$
(B) $x \sqrt[4]{x}$
(C) $\sqrt[8]{x}$
(D) $\sqrt[8]{x^{3}}$
(E) $\sqrt[8]{x^{7}}$

7 If $x=\frac{a}{b}, a \neq b$ and $b \neq 0$, then $\frac{a+b}{a-b}=$
(A) $\frac{x}{x+1}$
(B) $\frac{x+1}{x-1}$
(C) 1
(D) $x-\frac{1}{x}$
(E) $x+\frac{1}{x}$

8 Liquid X does not mix with water. Unless obstructed, it spreads out on the surface of water to form a circular film 0.1 cm thick. A rectangular box measuring 6 cm by 3 cm by 12 cm is filled with liquid X . Its contents are poured onto a large body of water. What will be the radius, in centimeters, of the resulting circular film?
(A) $\frac{\sqrt{216}}{\pi}$
(B) $\sqrt{\frac{216}{\pi}}$
(C) $\sqrt{\frac{2160}{\pi}}$
(D) $\frac{216}{\pi}$
(E) $\frac{2160}{\pi}$

9 From time $t=0$ to time $t=1$ a population increased by $i \%$, and from time $t=1$ to time $t=2$ the population increased by $j \%$. Therefore, from time $t=0$ to time $t=2$ the population increased by
(A) $(i+j) \%$
(B) $i j \%$
(C) $(i+i j) \%$
(D) $\left(i+j+\frac{i j}{100}\right) \%$
(E) $\left(i+j+\frac{i+j}{100}\right) \%$

10 Point P is 9 units from the center of a circle of radius 15 . How many different chords of the circle contain P and have integer lengths?
(A) 11
(B) 12
(C) 13
(D) 14
(E) 29

11 Jack and Jill run 10 kilometers. They start at the same point, run 5 kilometers up a hill, and return to the starting point by the same route. Jack has a 10 minute head start and runs at the rate of $15 \mathrm{~km} / \mathrm{hr}$ uphill and $20 \mathrm{~km} / \mathrm{hr}$ downhill. Jill runs $16 \mathrm{~km} / \mathrm{hr}$ uphill and $22 \mathrm{~km} / \mathrm{hr}$ downhill. How far from the top of the hill are they when they pass going in opposite directions?
(A) $\frac{5}{4} \mathrm{~km}$
(B) $\frac{35}{27} \mathrm{~km}$
(C) $\frac{27}{20} \mathrm{~km}$
(D) $\frac{7}{3} \mathrm{~km}$
(E) $\frac{28}{9} \mathrm{~km}$

12 The measures (in degrees) of the interior angles of a convex hexagon form an arithmetic sequence of positive integers. Let m° be the measure of the largest interior angle of the hexagon. The largest possible value of m° is
(A) 165°
(B) 167°
(C) 170°
(D) 175°
(E) 179°

13 Horses X, Y and Z are entered in a three-horse race in which ties are not possible. If the odds against X winning are $3-$ to -1 and the odds against Y winning are $2-$ to -3 , what are the odds against Z winning? (By "odds against H winning are p-to-q" we mean that probability of H winning the race is $\frac{q}{p+q}$.)
(A) $3-t o-20$
(B) $5-t o-6$
(C) $8-t o-5$
(D) $17-$ to -3
(E) $20-t o-3$

14 If x is the cube of a positive integer and d is the number of positive integers that are divisors of x, then d could be
(A) 200
(B) 201
(C) 202
(D) 203
(E) 204

15 A circular table has exactly 60 chairs around it. There are N people seated at this table in such a way that the next person to be seated must sit next to someone. The smallest possible value of N is
(A) 15
(B) 20
(C) 30
(D) 40
(E) 58

16 One hundred students at Century High School participated in the AHSME last year, and their mean score was 100 . The number of non-seniors taking the AHSME was 50% more than the number of seniors, and the mean score of the seniors was 50% higher than that of the nonseniors. What was the mean score of the seniors?
(A) 100
(B) 112.5
(C) 120
(D) 125
(E) 150

17 A positive integer N is a palindrome if the integer obtained by reversing the sequence of digits of N is equal to N. The year 1991 is the only year in the current century with the following two properties:
(a) It is a palindrome
(b) It factors as a product of a 2-digit prime palindrome and a 3-digit prime palindrome.

How many years in the millennium between 1000 and 2000 (including the year 1991) have properties (a) and (b)?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

18 If S is the set of points z in the complex plane such that $(3+4 i) z$ is a real number, then S is a
(A) right triangle
(B) circle
(C) hyperbola
(D) line
(E) parabola

19 Triangle $A B C$ has a right angle at $C, A C=3$ and $B C=4$. Triangle $A B D$ has a right angle at A and $A D=12$. Points C and D are on opposite sides of $\overline{A B}$. The line through D parallel to $\overline{A C}$ meets $\overline{C B}$ extended at E. If $\frac{D E}{D B}=\frac{m}{n}$, where m and n are relatively prime positive integers, then $m+n=$

(A) 25
(B) 128
(C) 153
(D) 243
(E) 256

20 The sum of all real x such that $\left(2^{x}-4\right)^{3}+\left(4^{x}-2\right)^{3}=\left(4^{x}+2^{x}-6\right)^{3}$ is
(A) $3 / 2$
(B) 2
(C) $5 / 2$
(D) 3
(E) $7 / 2$

21 If $f\left(\frac{x}{x-1}\right)=\frac{1}{x}$ for all $x \neq 0,1$ and $0<\theta<\frac{\pi}{2}$, then $f\left(\sec ^{2} \theta\right)=$
(A) $\sin ^{2} \theta$
(B) $\cos ^{2} \theta$
(C) $\tan ^{2} \theta$
(D) $\cot ^{2} \theta$
(E) $\csc ^{2} \theta$

22 Two circles are externally tangent. Lines $\overline{P A B}$ and $\overline{P A^{\prime} B^{\prime}}$ are common tangents with A and A^{\prime} on the smaller circle and B and B^{\prime} on the larger circle. If $P A=A B=4$, then the area of the smaller circle is

(A) 1.44π
(B) 2π
(C) 2.56π
(D) $\sqrt{8} \pi$
(E) 4π

23 If $A B C D$ is a $2 X 2$ square, E is the midpoint of $\overline{A B}, F$ is the midpoint of $\overline{B C}, \overline{A F}$ and $\overline{D E}$ intersect at I, and $\overline{B D}$ and $\overline{A F}$ intersect at H, then the area of quadrilateral BEIH is

(A) $\frac{1}{3}$
(B) $\frac{2}{5}$
(C) $\frac{7}{15}$
(D) $\frac{8}{15}$
(E) $\frac{3}{5}$

24 The graph, G of $y=\log _{10} x$ is rotated 90° counter-clockwise about the origin to obtain a new graph G^{\prime}. Which of the following is an equation for G^{\prime} ?
(A) $y=\log _{10}\left(\frac{x+90}{9}\right)$
(B) $y=\log _{x} 10$
(C) $y=\frac{1}{x+1}$
(D) $y=10^{-x}$
(E) $y=10^{x}$

25 If $T_{n}=1+2+3+\ldots+n$ and

$$
P_{n}=\frac{T_{2}}{T_{2}-1} \cdot \frac{T_{3}}{T_{3}-1} \cdot \frac{T_{4}}{T_{4}-1} \cdot \cdots \cdot \frac{T_{n}}{T_{n}-1} \quad \text { for } n=2,3,4, \ldots,
$$

then P_{1991} is closest to which of the following numbers?
(A) 2.0
(B) 2.3
(C) 2.6
(D) 2.9
(E) 3.2

26 An n-digit positive integer is cute if its n digits are an arrangement of the set $\{1,2, \ldots, n\}$ and its first k digits form an integer that is divisible by k, for $k=1,2, \ldots, n$. For example 321 is a cute 3 -digit integer because 1 divides 3,2 divides 32 , and 3 divides 321 . How many cute 6 -digit integers are there?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

27 If $x+\sqrt{x^{2}-1}+\frac{1}{x-\sqrt{x^{2}-1}}=20$ then $x^{2}+\sqrt{x^{4}-1}+\frac{1}{x^{2}+\sqrt{x^{4}-1}}=$
(A) 5.05
(B) 20
(C) 51.005
(D) 61.25
(E) 400

28 Initially an urn contains 100 black marbles and 100 white marbles. Repeatedly, three marbles are removed from the urn and replaced from a pile outside the urn as follows:

MARBLES REMOVED	REPLACED WITH
3 black	
2 black, 1 white	
1 black	
3 black, 2 white	
3 white	
2 white	
1 black, 1 white	

Which of the following sets of marbles could be the contents of the urn after repeated applications of this procedure?
(A) 2 black marbles (B) 2 white marbles (C) 1 black marble (D) 1 black and 1 white marble (E) 1 white marble

29 Equilateral triangle $A B C$ has been creased and folded so that vertex A now rests at A^{\prime} on $\overline{B C}$ as shown. If $B A^{\prime}=1$ and $A^{\prime} C=2$ then the length of crease $\overline{P Q}$ is

(A) $\frac{8}{5}$
(B) $\frac{7}{20} \sqrt{21}$
(C) $\frac{1+\sqrt{5}}{2}$
(D) $\frac{13}{8}$
(E) $\sqrt{3}$

30 For any set S, let $|S|$ denote the number of elements in S, and let $n(S)$ be the number of subsets of S, including the empty set and the set S itself. If A, B and C are sets for which

$$
n(A)+n(B)+n(C)=n(A \cup B \cup C) \quad \text { and } \quad|A|=|B|=100,
$$

then what is the minimum possible value of $|A \cap B \cap C|$?
(A) 96
(B) 97
(C) 98
(D) 99
(E) 100

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

