

AMC 12/AHSME 1991

www.artofproblemsolving.com/community/c4855 by jeffq, rrusczyk

1 If for any three distinct numbers *a*, *b* and *c* we define

	$\boxed{a,b,c} = \frac{c+a}{c-b},$
	then $1, -2, -3 =$
	(A) -2 (B) $-\frac{2}{5}$ (C) $-\frac{1}{4}$ (D) $\frac{2}{5}$ (E) 2
2	$ 3 - \pi =$
	(A) $\frac{1}{7}$ (B) 0.14 (C) $3 - \pi$ (D) $3 + \pi$ (E) $\pi - 3$
3	$(4^{-1} - 3^{-1})^{-1} =$
	(A) -12 (B) -1 (C) $\frac{1}{12}$ (D) 1 (E) 12

Which of the following triangles cannot exist?
(A) An acute isosceles triangle (B) An isosceles right triangle (C) An obtuse right triangle (D) A scalene right (E) A scalene obtuse triangle

5 In the arrow-shaped polygon [see figure], the angles at vertices A, C, D, E and F are right angles, BC = FG = 5, CD = FE = 20, DE = 10, and AB = AG. The area of the polygon is closest to

6	If $x \ge 0$, then $\sqrt{x\sqrt{x\sqrt{x}}} =$		
	(A) $x\sqrt{x}$ (B) $x\sqrt[4]{x}$ (C) $\sqrt[8]{x}$ (D) $\sqrt[8]{x^3}$ (E) $\sqrt[8]{x^7}$		
7	If $x = \frac{a}{b}$, $a \neq b$ and $b \neq 0$, then $\frac{a+b}{a-b} =$		
	(A) $\frac{x}{x+1}$ (B) $\frac{x+1}{x-1}$ (C) 1 (D) $x - \frac{1}{x}$ (E) $x + \frac{1}{x}$		
8	Liquid X does not mix with water. Unless obstructed, it spreads out on the surface of water to form a circular film 0.1 cm thick. A rectangular box measuring 6 cm by 3 cm by 12 cm is filled with liquid X. Its contents are poured onto a large body of water. What will be the radius, in centimeters, of the resulting circular film?		
	(A) $\frac{\sqrt{216}}{\pi}$ (B) $\sqrt{\frac{216}{\pi}}$ (C) $\sqrt{\frac{2160}{\pi}}$ (D) $\frac{216}{\pi}$ (E) $\frac{2160}{\pi}$		
9	From time $t = 0$ to time $t = 1$ a population increased by $i\%$, and from time $t = 1$ to time $t = 2$ the population increased by $j\%$. Therefore, from time $t = 0$ to time $t = 2$ the population increased by by		
	(A) $(i+j)\%$ (B) $ij\%$ (C) $(i+ij)\%$ (D) $\left(i+j+\frac{ij}{100}\right)\%$ (E) $\left(i+j+\frac{i+j}{100}\right)\%$		
10	Point P is 9 units from the center of a circle of radius 15. How many different chords of the circontain P and have integer lengths?		
	(A) 11 (B) 12 (C) 13 (D) 14 (E) 29		
11	Jack and Jill run 10 kilometers. They start at the same point, run 5 kilometers up a hill, and return to the starting point by the same route. Jack has a 10 minute head start and runs at the rate of 15 km/hr uphill and 20 km/hr downhill. Jill runs 16 km/hr uphill and 22 km/hr downhill. How far from the top of the hill are they when they pass going in opposite directions?		
	(A) $\frac{5}{4} km$ (B) $\frac{35}{27} km$ (C) $\frac{27}{20} km$ (D) $\frac{7}{3} km$ (E) $\frac{28}{9} km$		
12	The measures (in degrees) of the interior angles of a convex hexagon form an arithmetic sequence of positive integers. Let m° be the measure of the largest interior angle of the hexagon. The largest possible value of m° is		
	(A) 165° (B) 167° (C) 170° (D) 175° (E) 179°		
13	Horses X, Y and Z are entered in a three-horse race in which ties are not possible. If the odds against X winning are $3 - to - 1$ and the odds against Y winning are $2 - to - 3$, what are the odds against Z winning? (By "odds against H winning are p-to-q" we mean that probability of H winning the race is $\frac{q}{p+q}$.)		

AoPS Community 1991 AMC 12/AHSME (C) 8 - to - 5(A) 3 - to - 20**(B)** 5 - to - 6(D) 17 - to - 3(E) 20 - to - 314 If x is the cube of a positive integer and d is the number of positive integers that are divisors of x_{i} then d could be **(A)** 200 **(C)** 202 **(B)** 201 **(D)** 203 **(E)** 204 15 A circular table has exactly 60 chairs around it. There are N people seated at this table in such a way that the next person to be seated must sit next to someone. The smallest possible value of N is **(A)** 15 **(B)** 20 **(C)** 30 **(D)** 40 **(E)** 58 One hundred students at Century High School participated in the AHSME last year, and their 16 mean score was 100. The number of non-seniors taking the AHSME was 50% more than the number of seniors, and the mean score of the seniors was 50% higher than that of the nonseniors. What was the mean score of the seniors? **(A)** 100 **(B)** 112.5 (C) 120 **(D)** 125 **(E)** 150 17 A positive integer N is a *palindrome* if the integer obtained by reversing the sequence of digits of N is equal to N. The year 1991 is the only year in the current century with the following two properties: (a) It is a palindrome (b) It factors as a product of a 2-digit prime palindrome and a 3-digit prime palindrome. How many years in the millennium between 1000 and 2000 (including the year 1991) have properties (a) and (b)? **(A)** 1 **(B)** 2 (C) 3 **(D)** 4 **(E)** 5 18 If S is the set of points z in the complex plane such that (3+4i)z is a real number, then S is a (A) right triangle (B) circle (C) hyperbola (D) line (E) parabola Triangle ABC has a right angle at C, AC = 3 and BC = 4. Triangle ABD has a right angle at A 19

and AD = 12. Points C and D are on opposite sides of \overline{AB} . The line through D parallel to \overline{AC} meets \overline{CB} extended at E. If $\frac{DE}{DB} = \frac{m}{n}$, where m and n are relatively prime positive integers, then m + n =

22 Two circles are externally tangent. Lines \overline{PAB} and $\overline{PA'B'}$ are common tangents with A and A' on the smaller circle and B and B' on the larger circle. If PA = AB = 4, then the area of the smaller circle is

(A) 1.44π

1991 AMC 12/AHSME

23 If ABCD is a 2 X 2 square, E is the midpoint of \overline{AB} , F is the midpoint of \overline{BC} , \overline{AF} and \overline{DE} intersect at I, and \overline{BD} and \overline{AF} intersect at H, then the area of quadrilateral BEIH is

1991 AMC 12/AHSME

(A)
$$\frac{1}{3}$$
 (B) $\frac{2}{5}$ (C) $\frac{7}{15}$ (D) $\frac{8}{15}$ (E) $\frac{3}{5}$

24 The graph, *G* of $y = \log_{10} x$ is rotated 90° counter-clockwise about the origin to obtain a new graph *G'*. Which of the following is an equation for *G'*?

(A) $y = \log_{10}\left(\frac{x+90}{9}\right)$ (B) $y = \log_x 10$ (C) $y = \frac{1}{x+1}$ (D) $y = 10^{-x}$ (E) $y = 10^x$

25 If $T_n = 1 + 2 + 3 + \ldots + n$ and

$$P_n = \frac{T_2}{T_2 - 1} \cdot \frac{T_3}{T_3 - 1} \cdot \frac{T_4}{T_4 - 1} \cdot \dots \cdot \frac{T_n}{T_n - 1} \quad \text{for } n = 2, 3, 4, \dots,$$

then P_{1991} is closest to which of the following numbers?

26 An *n*-digit positive integer is *cute* if its *n* digits are an arrangement of the set $\{1, 2, ..., n\}$ and its first *k* digits form an integer that is divisible by *k*, for k = 1, 2, ..., n. For example 321 is a cute 3-digit integer because 1 divides 3, 2 divides 32, and 3 divides 321. How many cute 6-digit integers are there?

(A)
$$0$$
 (B) 1 (C) 2 (D) 3 (E) 4

27 If
$$x + \sqrt{x^2 - 1} + \frac{1}{x - \sqrt{x^2 - 1}} = 20$$
 then $x^2 + \sqrt{x^4 - 1} + \frac{1}{x^2 + \sqrt{x^4 - 1}} =$
(A) 5.05 (B) 20 (C) 51.005 (D) 61.25 (E) 400

28 Initially an urn contains 100 black marbles and 100 white marbles. Repeatedly, three marbles are removed from the urn and replaced from a pile outside the urn as follows:

MARBLES REMOVED	REPLACED WITH
3 black	1 black
2 black, 1 white	1 black, 1 white
1 black, 2 white	2 white
3 white	1 black, 1 white

Which of the following sets of marbles could be the contents of the urn after repeated applications of this procedure?

(A) 2 black marbles (B) 2 white marbles (C) 1 black marble (D) 1 black and 1 white marble (E) 1 white marble

29 Equilateral triangle ABC has been creased and folded so that vertex A now rests at A' on \overline{BC} as shown. If BA' = 1 and A'C = 2 then the length of crease \overline{PQ} is

1991 AMC 12/AHSME

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

© 2022 AoPS Incorporated 7

Art of Problem Solving is an ACS WASC Accredited School.