Art of Problem Solving

AoPS Community

Switzerland Team Selection Test 2016

www.artofproblemsolving.com/community/c485996
by tchebytchev, va2010, N.T.TUAN, ABCDE

- Day 1

Problem 1 Let n be a natural number. Two numbers are called "unsociable" if their greatest common divisor is 1 . The numbers $\{1,2, \ldots, 2 n\}$ are partitioned into n pairs. What is the minimum number of "unsociable" pairs that are formed?

Problem 2 Find all polynomial functions with real coefficients for which

$$
(x-2) P(x+2)+(x+2) P(x-2)=2 x P(x)
$$

for all real x
Problem 3 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.

- Day 2

Problem 4 Find all integers $n \geq 1$ such that for all $x_{1}, \ldots, x_{n} \in \mathbb{R}$ the following inequality is satisfied

$$
\left(\frac{x_{1}^{n}+\ldots+x_{n}^{n}}{n}-x_{1} \ldots x_{n}\right)\left(x_{1}+\ldots+x_{n}\right) \geq 0
$$

Problem 5 For a finite set A of positive integers, a partition of A into two disjoint nonempty subsets A_{1} and A_{2} is good if the least common multiple of the elements in A_{1} is equal to the greatest common divisor of the elements in A_{2}. Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.

Problem 6 Prove that for every nonnegative integer n, the number $7^{7^{n}}+1$ is the product of at least $2 n+3$ (not necessarily distinct) primes.

- Day 3

Problem 7 Find all positive integers n such that

$$
\sum_{d \mid n, 1 \leq d<n} d^{2}=5(n+1)
$$

Problem 8 Let $A B C$ be a triangle with $A B \neq A C$ and let M be the middle of $B C$. The bisector of $\angle B A C$ intersects the line $B C$ in Q. Let H be the foot of A on $B C$. The perpendicular to $A Q$ passing through A intersects the line $B C$ in S. Show that $M H \times Q S=A B \times A C$.

Problem 9 Find all functions $f: \mathbb{R} \mapsto \mathbb{R}$ such that

$$
(f(x)+y)(f(x-y)+1)=f(f(x f(x+1))-y f(y-1))
$$

for all $x, y \in \mathbb{R}$

- \quad Day 4

Problem 10 Let $A B C$ be a non-rectangle triangle with M the middle of $B C$. Let D be a point on the line $A B$ such that $C A=C D$ and let E be a point on the line $B C$ such that $E B=E D$. The parallel to $E D$ passing through A intersects the line $M D$ at the point I and the line $A M$ intersects the line $E D$ at the point J. Show that the points C, I and J are aligned.

Problem 11 Let m and n be positive integers such that $m>n$. Define $x_{k}=\frac{m+k}{n+k}$ for $k=1,2, \ldots, n+1$. Prove that if all the numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ are integers, then $x_{1} x_{2} \ldots x_{n+1}-1$ is divisible by an odd prime.

Problem 12 In an EGMO exam, there are three exercises, each of which can yield a number of points between 0 and 7 . Show that, among the 49 participants, one can always find two such that the first in each of the three tasks was at least as good as the other.

