

AoPS Community

2017 China Northern Math Olympiad

www.artofproblemsolving.com/community/c486225 by mcyoder, ManuelKahayon, minecraftfaq, augustin_p

Grade 10

1	A sequence $\{a_n\}$ is defined as follows: $a_1 = 1$, $a_2 = \frac{1}{3}$, and for all $n \ge 1$, $\frac{(1+a_n)(1+a_{n+2})}{(1+a_n+1)^2} = \frac{a_n a_{n+2}}{a_{n+1}^2}$.
	Prove that, for all $n \ge 1$, $a_1 + a_2 + + a_n < \frac{34}{21}$.
2	Prove that there exist infinitely many integers n which satisfy $2017^2 1^n + 2^n + + 2017^n$.
3	Let <i>D</i> be the midpoint of side <i>BC</i> of triangle <i>ABC</i> . Let <i>E</i> , <i>F</i> be points on sides <i>AB</i> , <i>AC</i> respectively such that $DE = DF$. Prove that $AE + AF = BE + CF \iff \angle EDF = \angle BAC$.
4	Let Q be a set of permutations of $1, 2,, 100$ such that for all $1 \le a, b \le 100$, a can be found to the left of b and adjacent to b in at most one permutation in Q . Find the largest possible number of elements in Q .
5	Triangle ABC has $AB > AC$ and $\angle A = 60^{\circ}$. Let M be the midpoint of BC , N be the point on segment AB such that $\angle BNM = 30^{\circ}$. Let D, E be points on AB, AC respectively. Let F, G, H be the midpoints of BE, CD, DE respectively. Let O be the circumcenter of triangle FGH . Prove that O lies on line MN .
6	Find all integers n such that there exists a concave pentagon which can be dissected into n congruent triangles.
7	Let $S(n)$ denote the sum of the digits of the base-10 representation of an natural number n . For example. $S(2017) = 2 + 0 + 1 + 7 = 10$. Prove that for all primes p , there exists infinitely many n which satisfy $S(n) \equiv n \mod p$.
8	Let $n > 1$ be an integer, and let $x_1, x_2,, x_n$ be real numbers satisfying $x_1, x_2,, x_n \in [0, n]$ with $x_1x_2x_n = (n - x_1)(n - x_2)(n - x_n)$. Find the maximum value of $y = x_1 + x_2 + + x_n$.
Grade	11
1	Define sequence $(a_n): a_1 = \mathbf{e}, a_2 = \mathbf{e}^3, \mathbf{e}^{1-k}a_n^{k+2} = a_{n+1}a_{n-1}^{2k}$ for all $n \ge 2$, where k is a positive real number. Find $\prod_{i=1}^{2017} a_i$.
2	Grade 10 P3

AoPS Community

3	Grade 10 P4
4	Positive intenger $n \ge 3$. a_1, a_2, \dots, a_n are n positive intengers that are pairwise coprime, satisfying that there exists $k_1, k_2, \dots, k_n \in \{-1, 1\}, \sum_{i=1}^n k_i a_i = 0$. Are there positive intengers b_1, b_2, \dots, b_n , for any $k \in \mathbb{Z}_+$, $b_1 + ka_1, b_2 + ka_2, \dots, b_n + ka_n$ are pairwise coprime?
5	Length of sides of regular hexagon $ABCDEF$ is a . Two moving points M, N moves on sides BC, DE , satisfy that $\angle MAN = \frac{\pi}{3}$. Prove that $AM \cdot AN - BM \cdot DN$ is a definite value.
6	Define $S_r(n)$: digit sum of n in base r . For example, $38 = (1102)_3$, $S_3(38) = 1 + 1 + 0 + 2 = 4$. Prove: (a) For any $r > 2$, there exists prime p , for any positive intenger n , $S_r(n) \equiv n \mod p$. (b) For any $r > 1$ and prime p , there exists infinitely many n , $S_r(n) \equiv n \mod p$.
7	Grade 10 P8
8	On Qingqing Grassland, there are 7 sheep numberd $1, 2, 3, 4, 5, 6, 7$ and 2017 wolves numberd $1, 2, \dots, 2017$. We have such strange rules: (1) Define $P(n)$: the number of prime numbers that are smaller than n . Only when $P(i) \equiv j \pmod{7}$, wolf i may eat sheep j (he can also choose not to eat the sheep). (2) If wolf i eat sheep j , he will immediately turn into sheep j . (3) If a wolf can make sure not to be eaten, he really wants to experience life as a sheep. Assume that all wolves are very smart, then how many wolves will remain in the end?

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.