AoPS Community

2017 China Northern Math Olympiad

www.artofproblemsolving.com/community/c486225
by mcyoder, ManuelKahayon, minecraftfaq, augustin_p

Grade 10

1 A sequence $\left\{a_{n}\right\}$ is defined as follows: $a_{1}=1, a_{2}=\frac{1}{3}$, and for all $n \geq 1, \frac{\left(1+a_{n}\right)\left(1+a_{n+2}\right)}{\left(1+a_{n}+1\right)^{2}}=\frac{a_{n} a_{n+2}}{a_{n+1}^{2}}$. Prove that, for all $n \geq 1, a_{1}+a_{2}+\ldots+a_{n}<\frac{34}{21}$.

2 Prove that there exist infinitely many integers n which satisfy $2017^{2} \mid 1^{n}+2^{n}+\ldots+2017^{n}$.
3 Let D be the midpoint of side $B C$ of triangle $A B C$. Let E, F be points on sides $A B, A C$ respectively such that $D E=D F$. Prove that $A E+A F=B E+C F \Longleftrightarrow \angle E D F=\angle B A C$.

4 Let Q be a set of permutations of $1,2, \ldots, 100$ such that for all $1 \leq a, b \leq 100, a$ can be found to the left of b and adjacent to b in at most one permutation in Q. Find the largest possible number of elements in Q.

5 Triangle $A B C$ has $A B>A C$ and $\angle A=60^{\circ}$. Let M be the midpoint of $B C, N$ be the point on segment $A B$ such that $\angle B N M=30^{\circ}$. Let D, E be points on $A B, A C$ respectively. Let F, G, H be the midpoints of $B E, C D, D E$ respectively. Let O be the circumcenter of triangle $F G H$. Prove that O lies on line $M N$.

6 Find all integers n such that there exists a concave pentagon which can be dissected into n congruent triangles.

7 Let $S(n)$ denote the sum of the digits of the base-10 representation of an natural number n. For example. $S(2017)=2+0+1+7=10$. Prove that for all primes p, there exists infinitely many n which satisfy $S(n) \equiv n \bmod p$.

8 Let $n>1$ be an integer, and let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying $x_{1}, x_{2}, \ldots, x_{n} \in[0, n]$ with $x_{1} x_{2} \ldots x_{n}=\left(n-x_{1}\right)\left(n-x_{2}\right) \ldots\left(n-x_{n}\right)$. Find the maximum value of $y=x_{1}+x_{2}+\ldots+x_{n}$.

Grade 11

1 Define sequence $\left(a_{n}\right): a_{1}=\mathbf{e}, a_{2}=\mathbf{e}^{3}, \mathbf{e}^{1-k} a_{n}^{k+2}=a_{n+1} a_{n-1}^{2 k}$ for all $n \geq 2$, where k is a positive real number. Find $\prod_{i=1}^{2017} a_{i}$.

$2 \quad$ Grade 10 P3

$3 \quad$ Grade 10 P4

4 Positive intenger $n \geq 3 . a_{1}, a_{2}, \cdots, a_{n}$ are n positive intengers that are pairwise coprime, satisfying that there exists $k_{1}, k_{2}, \cdots, k_{n} \in\{-1,1\}, \sum_{i=1}^{n} k_{i} a_{i}=0$. Are there positive intengers $b_{1}, b_{2}, \cdots, b_{n}$, for any $k \in \mathbb{Z}_{+}, b_{1}+k a_{1}, b_{2}+k a_{2}, \cdots, b_{n}+k a_{n}$ are pairwise coprime?

5 Length of sides of regular hexagon $A B C D E F$ is a. Two moving points M, N moves on sides $B C, D E$, satisfy that $\angle M A N=\frac{\pi}{3}$. Prove that $A M \cdot A N-B M \cdot D N$ is a definite value.
$6 \quad$ Define $S_{r}(n)$: digit sum of n in base r. For example, $38=(1102)_{3}, S_{3}(38)=1+1+0+2=4$. Prove:
(a) For any $r>2$, there exists prime p, for any positive intenger $n, S_{r}(n) \equiv n \bmod p$.
(b) For any $r>1$ and prime p, there exists infinitely many $n, S_{r}(n) \equiv n \bmod p$.

7 Grade 10 P8

8 On Qingqing Grassland, there are 7 sheep numberd $1,2,3,4,5,6,7$ and 2017 wolves numberd $1,2, \cdots, 2017$. We have such strange rules:
(1) Define $P(n)$: the number of prime numbers that are smaller than n. Only when $P(i) \equiv j$ $(\bmod 7)$, wolf i may eat sheep j (he can also choose not to eat the sheep).
(2) If wolf i eat sheep j, he will immediately turn into sheep j.
(3) If a wolf can make sure not to be eaten, he really wants to experience life as a sheep.

Assume that all wolves are very smart, then how many wolves will remain in the end?

