

AoPS Community

2015 Vietnam Team selection test

problems 1, 2, 3, 4, 6

www.artofproblemsolving.com/community/c486732

by gausskarl, phuong, linqaszayi, tenplusten, parmenides51

1st Day

Problem 1 Let α be the positive root of the equation $x^2 + x = 5$. Let n be a positive integer number, and let $c_0, c_1, \ldots, c_n \in \mathbb{N}$ be such that $c_0 + c_1\alpha + c_2\alpha^2 + \cdots + c_n\alpha^n = 2015$. a. Prove that $c_0 + c_1 + c_2 + \cdots + c_n \equiv 2 \pmod{3}$. b. Find the minimum value of the sum $c_0 + c_1 + c_2 + \cdots + c_n$.

Problem 2 sorry if this has been posted before .

given a fixed circle (O) and two fixed point B, C on it.point A varies on circle (O). let I be the midpoint of BC and H be the orthocenter of $\triangle ABC$. ray IH meet (O) at K, AH meet BC at D, KD meet (O) at M .a line pass M and perpendicular to BC meet AI at N. a) prove that N varies on a fixed circle.

a) prove that N varies on a fixed circle. b) a circle pass N and tangent to AK at A cut AB A

b) a circle pass N and tangent to AK at A cut AB, AC at P, Q. let J be the midpoint of PQ .prove that AJ pass through a fixed point.

Problem 3 A positive interger number k is called t - m-property if forall positive interger number a, there exists a positive integer number n such that $1^k + 2^k + 3^k + ... + n^k \equiv a \pmod{m}$.

a) Find all positive integer numbers k which has t - 20-property.

b) Find smallest positive integer number k which has $t - 20^{15}$ -property.

2nd Day

Problem 4 There are 100 students who praticipate at exam. Also there are 25 members of jury. Each student is checked by one jury. Known that every student likes 10 jury *a*) Prove that we can select 7 jury such that any student likes at least one jury. *b*) Prove that we can make this every student will be checked by the jury that he likes and every jury will check at most 10 students.

Problem 5 Let *ABC* be a triangle with an interior point *P* such that $\angle APB = \angle APC = \alpha$ and $\alpha > 180^{\circ} - \angle BAC$. The circumcircle of triangle *APB* cuts *AC* at *E*, the circumcircle of triangle *APC* cuts *AB* at *F*. Let *Q* be the point in the triangle *AEF* such that $\angle AQE = \angle AQF = \alpha$. Let *D* be the symmetric point of *Q* wrt *EF*. Angle bisector of $\angle EDF$ cuts *AP* at *T*. a) Prove that $\angle DET = \angle ABC$, $\angle DFT = \angle ACB$. b) Straight line *PA* cuts straight lines *DE*, *DF* at *M*, *N* respectively. Denote *I*, *J* the incenters

b) Straight line PA cuts straight lines DE, DF at M, N respectively. Denote I, J the incenters of the triangles PEM, PFN, and K the circumcenter of the triangle DIJ. Straight line DT cut (K) at H. Prove that HK passes through the incenter of the triangle DMN.

AoPS Community

2015 Vietnam Team selection test

Problem 6 Find the smallest positive interger number n such that there exists n real numbers a_1, a_2, \ldots, a_n satisfied three conditions as follow:

a. $a_1 + a_2 + \dots + a_n > 0$; **b**. $a_1^3 + a_2^3 + \dots + a_n^3 < 0$; **c**. $a_1^5 + a_2^5 + \dots + a_n^5 > 0$.

Act of Problem Solving is an ACS WASC Accredited School.