Art of Problem Solving

AoPS Community

problems 1, 2, 3, 4, 6
www.artofproblemsolving.com/community/c486732
by gausskarl, phuong, linqaszayi, tenplusten, parmenides51

- $\quad 1$ st Day

Problem 1 Let α be the positive root of the equation $x^{2}+x=5$. Let n be a positive integer number, and let $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{N}$ be such that $c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+\cdots+c_{n} \alpha^{n}=2015$.
a. Prove that $c_{0}+c_{1}+c_{2}+\cdots+c_{n} \equiv 2(\bmod 3)$.
b. Find the minimum value of the sum $c_{0}+c_{1}+c_{2}+\cdots+c_{n}$.

Problem 2 sorry if this has been posted before .
given a fixed circle (O) and two fixed point B, C on it.point A varies on circle (O). let I be the midpoint of $B C$ and H be the orthocenter of $\triangle A B C$. ray $I H$ meet (O) at $K, A H$ meet $B C$ at $D, K D$ meet (O) at M.a line pass M and perpendicular to $B C$ meet $A I$ at N.
a) prove that N varies on a fixed circle.
b) a circle pass N and tangent to $A K$ at A cut $A B, A C$ at P, Q. let J be the midpoint of $P Q$.prove that $A J$ pass through a fixed point.

Problem 3 A positive interger number k is called $t-m$-property if forall positive interger number a, there exists a positive integer number n such that $1^{k}+2^{k}+3^{k}+\ldots+n^{k} \equiv a(\bmod m)$.
a) Find all positive integer numbers k which has t-20-property.
b) Find smallest positive integer number k which has $t-20^{15}$-property.

- 2nd Day

Problem 4 There are 100 students who praticipate at exam.Also there are 25 members of jury.Each student is checked by one jury.Known that every student likes 10 jury a) Prove that we can select 7 jury such that any student likes at least one jury. b) Prove that we can make this every student will be checked by the jury that he likes and every jury will check at most 10 students.

Problem 5 Let $A B C$ be a triangle with an interior point P such that $\angle A P B=\angle A P C=\alpha$ and $\alpha>$ $180^{\circ}-\angle B A C$. The circumcircle of triangle $A P B$ cuts $A C$ at E, the circumcircle of triangle $A P C$ cuts $A B$ at F. Let Q be the point in the triangle $A E F$ such that $\angle A Q E=\angle A Q F=\alpha$. Let D be the symmetric point of Q wrt $E F$. Angle bisector of $\angle E D F$ cuts $A P$ at T.
a) Prove that $\angle D E T=\angle A B C, \angle D F T=\angle A C B$.
b) Straight line $P A$ cuts straight lines $D E, D F$ at M, N respectively. Denote I, J the incenters of the triangles $P E M, P F N$, and K the circumcenter of the triangle $D I J$. Straight line $D T$ cut (K) at H. Prove that $H K$ passes through the incenter of the triangle $D M N$.

Problem 6 Find the smallest positive interger number n such that there exists n real numbers $a_{1}, a_{2}, \ldots, a_{n}$ satisfied three conditions as follow:
a. $a_{1}+a_{2}+\cdots+a_{n}>0$;
b. $a_{1}^{3}+a_{2}^{3}+\cdots+a_{n}^{3}<0$;
c. $a_{1}^{5}+a_{2}^{5}+\cdots+a_{n}^{5}>0$.

