

AoPS Community

AIME Problems 1989

www.artofproblemsolving.com/community/c4886 by 4everwise, joml88, rrusczyk

1	Compute $\sqrt{(31)(30)(29)(28) + 1}$.
2	Ten points are marked on a circle. How many distinct convex polygons of three or more sides can be drawn using some (or all) of the ten points as vertices?
3	Suppose n is a positive integer and d is a single digit in base 10. Find n if
	$\frac{n}{810} = 0.d25d25d25\dots$

- 4 If a < b < c < d < e are consecutive positive integers such that b + c + d is a perfect square and a + b + c + d + e is a perfect cube, what is the smallest possible value of *c*?
- 5 When a certain biased coin is flipped five times, the probability of getting heads exactly once is not equal to 0 and is the same as that of getting heads exactly twice. Let $\frac{i}{j}$, in lowest terms, be the probability that the coin comes up heads in exactly 3 out of 5 flips. Find i + j.
- **6** Two skaters, Allie and Billie, are at points A and B, respectively, on a flat, frozen lake. The distance between A and B is 100 meters. Allie leaves A and skates at a speed of 8 meters per second on a straight line that makes a 60° angle with AB. At the same time Allie leaves A, Billie leaves B at a speed of 7 meters per second and follows the straight path that produces the earliest possible meeting of the two skaters, given their speeds. How many meters does Allie skate before meeting Billie?

7 If the integer k is added to each of the numbers 36, 300, and 596, one obtains the squares of three consecutive terms of an arithmetic series. Find k.

AoPS Community

1989 AIME Problems

8 Assume that x_1, x_2, \ldots, x_7 are real numbers such that

 $\begin{aligned} x_1 + 4x_2 + 9x_3 + 16x_4 + 25x_5 + 36x_6 + 49x_7 &= 1\\ 4x_1 + 9x_2 + 16x_3 + 25x_4 + 36x_5 + 49x_6 + 64x_7 &= 12\\ 9x_1 + 16x_2 + 25x_3 + 36x_4 + 49x_5 + 64x_6 + 81x_7 &= 123. \end{aligned}$

Find the value of

 $16x_1 + 25x_2 + 36x_3 + 49x_4 + 64x_5 + 81x_6 + 100x_7.$

9 One of Euler's conjectures was disproved in then 1960s by three American mathematicians when they showed there was a positive integer *n* such that

$$133^5 + 110^5 + 84^5 + 27^5 = n^5.$$

Find the value of n.

10 Let *a*, *b*, *c* be the three sides of a triangle, and let α , β , γ , be the angles opposite them. If $a^2 + b^2 = 1989c^2$, find

$$\frac{\cot\gamma}{\cot\alpha+\cot\beta}.$$

- **11** A sample of 121 integers is given, each between 1 and 1000 inclusive, with repetitions allowed. The sample has a unique mode (most frequent value). Let D be the difference between the mode and the arithmetic mean of the sample. What is the largest possible value of $\lfloor D \rfloor$? (For real x, |x| is the greatest integer less than or equal to x.)
- **12** Let ABCD be a tetrahedron with AB = 41, AC = 7, AD = 18, BC = 36, BD = 27, and CD = 13, as shown in the figure. Let d be the distance between the midpoints of edges AB and CD. Find d^2 .

AoPS Community

- **13** Let S be a subset of $\{1, 2, 3, ..., 1989\}$ such that no two members of S differ by 4 or 7. What is the largest number of elements S can have?
- **14** Given a positive integer n, it can be shown that every complex number of the form r + si, where r and s are integers, can be uniquely expressed in the base -n + i using the integers $1, 2, ..., n^2$ as digits. That is, the equation

$$r + si = a_m(-n+i)^m + a_{m-1}(-n+i)^{m-1} + \dots + a_1(-n+i) + a_0$$

is true for a unique choice of non-negative integer m and digits a_0, a_1, \ldots, a_m chosen from the set $\{0, 1, 2, \ldots, n^2\}$, with $a_m \neq 0$. We write

$$r + si = (a_m a_{m-1} \dots a_1 a_0)_{-n+i}$$

to denote the base -n + i expansion of r + si. There are only finitely many integers k + 0i that have four-digit expansions

$$k = (a_3 a_2 a_1 a_0)_{-3+i} \quad a_3 \neq 0.$$

Find the sum of all such k.

15 Point *P* is inside $\triangle ABC$. Line segments *APD*, *BPE*, and *CPF* are drawn with *D* on *BC*, *E* on *AC*, and *F* on *AB* (see the figure at right). Given that *AP* = 6, *BP* = 9, *PD* = 6, *PE* = 3, and *CF* = 20, find the area of $\triangle ABC$.

https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

© 2022 AoPS Incorporated 3

Art of Problem Solving is an ACS WASC Accredited School.