AoPS Community

AIME Problems 1989

www.artofproblemsolving.com/community/c4886
by 4everwise, joml88, rrusczyk

1 Compute $\sqrt{(31)(30)(29)(28)+1}$.
2 Ten points are marked on a circle. How many distinct convex polygons of three or more sides can be drawn using some (or all) of the ten points as vertices?

3 Suppose n is a positive integer and d is a single digit in base 10. Find n if

$$
\frac{n}{810}=0 . d 25 d 25 d 25 \ldots
$$

4 If $a<b<c<d<e$ are consecutive positive integers such that $b+c+d$ is a perfect square and $a+b+c+d+e$ is a perfect cube, what is the smallest possible value of c ?

5 When a certain biased coin is flipped five times, the probability of getting heads exactly once is not equal to 0 and is the same as that of getting heads exactly twice. Let $\frac{i}{j}$, in lowest terms, be the probability that the coin comes up heads in exactly 3 out of 5 flips. Find $i+j$.

6 Two skaters, Allie and Billie, are at points A and B, respectively, on a flat, frozen lake. The distance between A and B is 100 meters. Allie leaves A and skates at a speed of 8 meters per second on a straight line that makes a 60° angle with $A B$. At the same time Allie leaves A, Billie leaves B at a speed of 7 meters per second and follows the straight path that produces the earliest possible meeting of the two skaters, given their speeds. How many meters does Allie skate before meeting Billie?

7 If the integer k is added to each of the numbers 36,300, and 596, one obtains the squares of three consecutive terms of an arithmetic series. Find k.

8 Assume that $x_{1}, x_{2}, \ldots, x_{7}$ are real numbers such that

$$
\begin{aligned}
x_{1}+4 x_{2}+9 x_{3}+16 x_{4}+25 x_{5}+36 x_{6}+49 x_{7} & =1 \\
4 x_{1}+9 x_{2}+16 x_{3}+25 x_{4}+36 x_{5}+49 x_{6}+64 x_{7} & =12 \\
9 x_{1}+16 x_{2}+25 x_{3}+36 x_{4}+49 x_{5}+64 x_{6}+81 x_{7} & =123 .
\end{aligned}
$$

Find the value of

$$
16 x_{1}+25 x_{2}+36 x_{3}+49 x_{4}+64 x_{5}+81 x_{6}+100 x_{7} .
$$

9 One of Euler's conjectures was disproved in then 1960s by three American mathematicians when they showed there was a positive integer n such that

$$
133^{5}+110^{5}+84^{5}+27^{5}=n^{5}
$$

Find the value of n.
10 Let a, b, c be the three sides of a triangle, and let α, β, γ, be the angles opposite them. If $a^{2}+b^{2}=$ $1989 c^{2}$, find

$$
\frac{\cot \gamma}{\cot \alpha+\cot \beta}
$$

11 A sample of 121 integers is given, each between 1 and 1000 inclusive, with repetitions allowed. The sample has a unique mode (most frequent value). Let D be the difference between the mode and the arithmetic mean of the sample. What is the largest possible value of $\lfloor D\rfloor$? (For real $x,\lfloor x\rfloor$ is the greatest integer less than or equal to x.)

12 Let $A B C D$ be a tetrahedron with $A B=41, A C=7, A D=18, B C=36, B D=27$, and $C D=13$, as shown in the figure. Let d be the distance between the midpoints of edges $A B$ and $C D$. Find d^{2}.

13 Let S be a subset of $\{1,2,3, \ldots, 1989\}$ such that no two members of S differ by 4 or 7 . What is the largest number of elements S can have?

14 Given a positive integer n, it can be shown that every complex number of the form $r+s i$, where r and s are integers, can be uniquely expressed in the base $-n+i$ using the integers $1,2, \ldots, n^{2}$ as digits. That is, the equation

$$
r+s i=a_{m}(-n+i)^{m}+a_{m-1}(-n+i)^{m-1}+\cdots+a_{1}(-n+i)+a_{0}
$$

is true for a unique choice of non-negative integer m and digits $a_{0}, a_{1}, \ldots, a_{m}$ chosen from the set $\left\{0,1,2, \ldots, n^{2}\right\}$, with $a_{m} \neq 0$. We write

$$
r+s i=\left(a_{m} a_{m-1} \ldots a_{1} a_{0}\right)_{-n+i}
$$

to denote the base $-n+i$ expansion of $r+s i$. There are only finitely many integers $k+0 i$ that have four-digit expansions

$$
k=\left(a_{3} a_{2} a_{1} a_{0}\right)_{-3+i} \quad a_{3} \neq 0
$$

Find the sum of all such k.
15 Point P is inside $\triangle A B C$. Line segments $A P D, B P E$, and $C P F$ are drawn with D on $B C, E$ on $A C$, and F on $A B$ (see the figure at right). Given that $A P=6, B P=9, P D=6, P E=3$, and $C F=20$, find the area of $\triangle A B C$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa. org).

