AoPS Community

South East Mathematical Olympiad 2017

www.artofproblemsolving.com/community/c489247
by I1090107005, CQYIMO42, CeuAzul, sqing

- \quad Grade 10

Day 1 July 30th
1 Let $x_{i} \in\{0,1\}(i=1,2, \cdots, n)$. If the function $f=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ only equals 0 or 1 , then define f as an " n-variable Boolean function" and denote

$$
D_{n}(f)=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0\right\}
$$

. (1) Determine the number of n-variable Boolean functions; (2) Let g be a 10-variable Boolean function satisfying

$$
g\left(x_{1}, x_{2}, \cdots, x_{10}\right) \equiv 1+x_{1}+x_{1} x_{2}+x_{1} x_{2} x_{3}+\cdots+x_{1} x_{2} \cdots x_{10} \quad(\bmod 2)
$$

Evaluate the size of the set $D_{10}(g)$ and $\sum_{\left(x_{1}, x_{2}, \cdots, x_{10}\right) \in D_{10}(g)}\left(x_{1}+x_{2}+x_{3}+\cdots+x_{10}\right)$.
2 Let $A B C$ be an acute-angled triangle. In $A B C, A B \neq A B, K$ is the midpoint of the the median $A D, D E \perp A B$ at $E, D F \perp A C$ at F. The lines $K E, K F$ intersect the line $B C$ at M, N, respectively. The circumcenters of $\triangle D E M, \triangle D F N$ are O_{1}, O_{2}, respectively.
Prove that $O_{1} O_{2} \| B C$.
$3 \quad$ For any positive integer n, let D_{n} denote the set of all positive divisors of n, and let $f_{i}(n)$ denote the size of the set

$$
F_{i}(n)=\left\{a \in D_{n} \mid a \equiv i \quad(\bmod 4)\right\}
$$

where $i=1,2$.
Determine the smallest positive integer m such that $2 f_{1}(m)-f_{2}(m)=2017$.
4 Let $a_{1}, a_{2}, \ldots, a_{2017}$ be reals satisfied $a_{1}=a_{2017},\left|a_{i}+a_{i+2}-2 a_{i+1}\right| \leq 1$ for all $i=1,2, \ldots, 2015$. Find the maximum value of $\max _{1 \leq i<j \leq 2017}\left|a_{i}-a_{j}\right|$.

Day 2 July 31st

$5 \quad$ Let $A B C D$ be a cyclic quadrilateral inscribed in circle O, where $A C \perp B D . M, N$ are the midpoint of arc $A D C, A B C . D O$ and $A N$ intersect each other at G, the line passes through G and parellel to $N C$ intersect $C D$ at K. Prove that $A K \perp B M$.

AoPS Community

2017 South East Mathematical Olympiad

6 The sequence $\left\{a_{n}\right\}$ satisfies $a_{1}=\frac{1}{2}, a_{2}=\frac{3}{8}$, and $a_{n+1}^{2}+3 a_{n} a_{n+2}=2 a_{n+1}\left(a_{n}+a_{n+2}\right)\left(n \in \mathbb{N}^{*}\right)$. (1) Determine the general formula of the sequence $\left\{a_{n}\right\}$; (2) Prove that for any positive integer n, there is $0<a_{n}<\frac{1}{\sqrt{2 n+1}}$.

7 Let m be a given positive integer. Define $a_{k}=\frac{(2 k m)!}{3(k-1) m}, k=1,2, \cdots$. Prove that there are infinite many integers and infinite many non-integers in the sequence $\left\{a_{k}\right\}$.

8 Given the positive integer $m \geq 2, n \geq 3$. Define the following set

$$
S=\{(a, b) \mid a \in\{1,2, \cdots, m\}, b \in\{1,2, \cdots, n\}\}
$$

Let A be a subset of S. If there does not exist positive integers $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}$ such that $x_{1}<$ $x_{2}, y_{1}<y_{2}<y_{3}$ and

$$
\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right),\left(x_{1}, y_{3}\right),\left(x_{2}, y_{2}\right) \in A
$$

Determine the largest possible number of elements in A.

- \quad Grade 11

Day 1 July 30th

1 The same as Grade 10 Problem 2
2 Let $x_{i} \in\{0,1\}(i=1,2, \cdots, n)$, if the value of function $f=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ can only be 0 or 1, then we call f a n-var Boole function, and we denote $D_{n}(f)=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\right.$ $0\}$. (1) Find the number of n-var Boole function; (2) Let g be a n-var Boole function such that $g\left(x_{1}, x_{2}, \cdots, x_{n}\right) \equiv 1+x_{1}+x_{1} x_{2}+x_{1} x_{2} x_{3}+\cdots+x_{1} x_{2} \cdots x_{n}(\bmod 2)$,
Find the number of elements of the set $D_{n}(g)$,and find the maximum of $n \in \mathbb{N}_{+}$such that $\sum_{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in D_{n}(g)}\left(x_{1}+x_{2}+\cdots+x_{n}\right) \leq 2017$.

3 Let $a_{1}, a_{2}, \cdots, a_{n+1}>0$. Prove that

$$
\sum_{i-1}^{n} a_{i} \sum_{i=1}^{n} a_{i+1} \geq \sum_{i=1}^{n} \frac{a_{i} a_{i+1}}{a_{i}+a_{i+1}} \cdot \sum_{i=1}^{n}\left(a_{i}+a_{i+1}\right)
$$

4 For any positive integer n, let D_{n} denote the set of all positive divisors of n, and let $f_{i}(n)$ denote the size of the set

$$
F_{i}(n)=\left\{a \in D_{n} \mid a \equiv i \quad(\bmod 4)\right\}
$$

where $i=0,1,2,3$.
Determine the smallest positive integer m such that $f_{0}(m)+f_{1}(m)-f_{2}(m)-f_{3}(m)=2017$.

Day 2 July 31st
5 Let a, b, c be real numbers, $a \neq 0$. If the equation $2 a x^{2}+b x+c=0$ has real root on the interval $[-1,1]$.
Prove that

$$
\min \{c, a+c+1\} \leq \max \{|b-a+1|,|b+a-1|\},
$$

and determine the necessary and sufficient conditions of a, b, c for the equality case to be achieved.

6 Let $A B C D$ be a cyclic quadrilateral inscribed in circle O, where $A C \perp B D$. M be the midpoint of arc $A D C$. Circle $(D O M)$ intersect $D A, D C$ at E, F. Prove that $B E=B F$.

7 Find the maximum value of n, such that there exist n pairwise distinct positive numbers $x_{1}, x_{2}, \cdots, x_{n}$, satisfy

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=2017
$$

8 Given the positive integer $m \geq 2, n \geq 3$. Define the following set

$$
S=\{(a, b) \mid a \in\{1,2, \cdots, m\}, b \in\{1,2, \cdots, n\}\}
$$

Let A be a subset of S. If there does not exist positive integers $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ such that $x_{1}<x_{2}<x_{3}, y_{1}<y_{2}<y_{3}$ and

$$
\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{2}, y_{3}\right),\left(x_{3}, y_{2}\right) \in A
$$

Determine the largest possible number of elements in A.

