Art of Problem Solving

IMC 2017

www.artofproblemsolving.com/community/c489349
by j_-_d, math90, BartSimpsons

- Day 1

1 Determine all complex numbers λ for which there exists a positive integer n and a real $n \times n$ matrix A such that $A^{2}=A^{T}$ and λ is an eigenvalue of A.

2 Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a differentiabe function, and suppose that there exists a constant $L>0$ such that

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq L|x-y|
$$

for all x, y. Prove that

$$
\left(f^{\prime}(x)\right)^{2}<2 L f(x)
$$

holds for all x.
$3 \quad$ For any positive integer m, denote by $P(m)$ the product of positive divisors of m (e.g $P(6)=36)$. For every positive integer n define the sequence

$$
a_{1}(n)=n, \quad a_{k+1}(n)=P\left(a_{k}(n)\right) \quad(k=1,2, \ldots, 2016)
$$

Determine whether for every set $S \subset\{1,2, \ldots, 2017\}$, there exists a positive integer n such that the following condition is satisfied:

For every k with $1 \leq k \leq 2017$, the number $a_{k}(n)$ is a perfect square if and only if $k \in S$.
4 There are n people in a city, and each of them has exactly 1000 friends (friendship is always symmetric). Prove that it is possible to select a group S of people such that at least $\frac{n}{2017}$ persons in S have exactly two friends in S.
$5 \quad$ Let k and n be positive integers with $n \geq k^{2}-3 k+4$, and let

$$
f(z)=z^{n-1}+c_{n-2} z^{n-2}+\cdots+c_{0}
$$

be a polynomial with complex coefficients such that

$$
c_{0} c_{n-2}=c_{1} c_{n-3}=\cdots=c_{n-2} c_{0}=0
$$

Prove that $f(z)$ and $z^{n}-1$ have at most $n-k$ common roots.
$6 \quad$ Let $f:[0 ;+\infty) \rightarrow \mathbb{R}$ be a continuous function such that $\lim _{x \rightarrow+\infty} f(x)=L$ exists (it may be finite or infinite). Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(n x) \mathrm{d} x=L
$$

7 Let $p(x)$ be a nonconstant polynomial with real coefficients. For every positive integer n, let

$$
q_{n}(x)=(x+1)^{n} p(x)+x^{n} p(x+1) .
$$

Prove that there are only finitely many numbers n such that all roots of $q_{n}(x)$ are real.
8 Define the sequence A_{1}, A_{2}, \ldots of matrices by the following recurrence:

$$
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{n+1}=\left(\begin{array}{cc}
A_{n} & I_{2^{n}} \\
I_{2^{n}} & A_{n}
\end{array}\right) \quad(n=1,2, \ldots)
$$

where I_{m} is the $m \times m$ identity matrix.
Prove that A_{n} has $n+1$ distinct integer eigenvalues $\lambda_{0}<\lambda_{1}<\ldots<\lambda_{n}$ with multiplicities $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$, respectively.

9 Define the sequence $f_{1}, f_{2}, \ldots:[0,1) \rightarrow \mathbb{R}$ of continuously differentiable functions by the following recurrence:

$$
f_{1}=1 ; \quad f_{n+1}^{\prime}=f_{n} f_{n+1} \quad \text { on }(0,1), \quad \text { and } \quad f_{n+1}(0)=1
$$

Show that $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for every $x \in[0,1)$ and determine the limit function.
10 Let K be an equilateral triangle in the plane. Prove that for every $p>0$ there exists an $\varepsilon>0$ with the following property: If n is a positive integer, and T_{1}, \ldots, T_{n} are non-overlapping triangles inside K such that each of them is homothetic to K with a negative ratio, and

$$
\sum_{\ell=1}^{n} \operatorname{area}\left(T_{\ell}\right)>\operatorname{area}(K)-\varepsilon
$$

then

$$
\sum_{\ell=1}^{n} \operatorname{perimeter}\left(T_{\ell}\right)>p
$$

