

AoPS Community

IMC 2017

www.artofproblemsolving.com/community/c489349 by j____d, math90, BartSimpsons

-	Day 1
1	Determine all complex numbers λ for which there exists a positive integer n and a real $n \times n$ matrix A such that $A^2 = A^T$ and λ is an eigenvalue of A .
2	Let $f : \mathbb{R} \to (0, \infty)$ be a differentiable function, and suppose that there exists a constant $L > 0$ such that
	$ f'(x) - f'(y) \le L x - y $
	for all x, y . Prove that $(f'(x))^2 < 2Lf(x)$
	holds for all x.
3	For any positive integer m , denote by $P(m)$ the product of positive divisors of m (e.g $P(6) = 36$). For every positive integer n define the sequence
	$a_1(n) = n,$ $a_{k+1}(n) = P(a_k(n))$ $(k = 1, 2,, 2016)$
	Determine whether for every set $S \subset \{1, 2,, 2017\}$, there exists a positive integer n such that the following condition is satisfied:
	For every k with $1 \le k \le 2017$, the number $a_k(n)$ is a perfect square if and only if $k \in S$.
4	There are n people in a city, and each of them has exactly 1000 friends (friendship is always symmetric). Prove that it is possible to select a group S of people such that at least $\frac{n}{2017}$ persons in S have exactly two friends in S .
5	Let k and n be positive integers with $n \ge k^2 - 3k + 4$, and let
	$f(z) = z^{n-1} + c_{n-2}z^{n-2} + \dots + c_0$
	be a polynomial with complex coefficients such that
	$c_0 c_{n-2} = c_1 c_{n-3} = \dots = c_{n-2} c_0 = 0$
	Prove that $f(z)$ and $z^n - 1$ have at most $n - k$ common roots.
_	Day 2
-	Day 2

AoPS Community

6 Let $f:[0;+\infty) \to \mathbb{R}$ be a continuous function such that $\lim_{x \to +\infty} f(x) = L$ exists (it may be finite or infinite). Prove that

$$\lim_{n \to \infty} \int_{0}^{1} f(nx) \, \mathrm{d}x = L.$$

7 Let p(x) be a nonconstant polynomial with real coefficients. For every positive integer n, let

$$q_n(x) = (x+1)^n p(x) + x^n p(x+1).$$

Prove that there are only finitely many numbers *n* such that all roots of $q_n(x)$ are real.

8 Define the sequence A_1, A_2, \ldots of matrices by the following recurrence:

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_{n+1} = \begin{pmatrix} A_n & I_{2^n} \\ I_{2^n} & A_n \end{pmatrix} \quad (n = 1, 2, \ldots)$$

where I_m is the $m \times m$ identity matrix.

Prove that A_n has n + 1 distinct integer eigenvalues $\lambda_0 < \lambda_1 < \ldots < \lambda_n$ with multiplicities $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$, respectively.

9 Define the sequence $f_1, f_2, \ldots : [0, 1) \to \mathbb{R}$ of continuously differentiable functions by the following recurrence:

 $f_1 = 1;$ $f'_{n+1} = f_n f_{n+1}$ on (0,1), and $f_{n+1}(0) = 1.$

Show that $\lim_{n\to\infty} f_n(x)$ exists for every $x \in [0,1)$ and determine the limit function.

10 Let K be an equilateral triangle in the plane. Prove that for every p > 0 there exists an $\varepsilon > 0$ with the following property: If n is a positive integer, and T_1, \ldots, T_n are non-overlapping triangles inside K such that each of them is homothetic to K with a negative ratio, and

$$\sum_{\ell=1}^{n} \operatorname{area}(T_{\ell}) > \operatorname{area}(K) - \varepsilon,$$

then

$$\sum_{\ell=1}^{n} \operatorname{perimeter}(T_{\ell}) > p.$$

🐼 AoPS Online 🐼 AoPS Academy 🙆 AoPS 🗱 Art of Problem Solving is an ACS WASC Accredited School.

2017 IMC