Art of Problem Solving

AoPS Community

Kosovo National Mathematical Olympiad 2017

www.artofproblemsolving.com/community/c489360
by dcouchman, XbenX, j_-_d, Duarti

- \quad Grade 9

1 1. Find all primes of the form $n^{3}-1$.
$2 \quad 2$.Solve the inequality $|x-1|-2|x-4|>3+2 x$
33.

3 red birds for 4 days eat 36 grams of seed, 5 blue birds for 3 days eat 60 gram of seed.
For how many days could be feed 2 red birds and 4 blue birds with 88 gr seed?
4 4. Find all triples of consecutive numbers , whose sum of squares is equal to some fourdigit number with all four digits being equal.
$5 \quad 5$.
Given the point T in rectangle ABCD, the distances from T to A, B, C is 15,20,25.
Find the distance from T to D.

- \quad Grade 11

1 Find all ordered pairs (a, b), of natural numbers, where $1<a, b \leq 100$, such that $\frac{1}{\log _{a} 10}+\frac{1}{\log _{b} 10}$ is a natural number.

2 Prove that for every positive real a, b, c the inequality holds : $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1 \geq \frac{2 \sqrt{2}}{3}\left(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\right.$ $\sqrt{\frac{c+a}{b}}$)
When does the equality hold?
$3 n$ teams participated in a basketball tournament. Each team has played with each team exactly one game. There was no tie. If in the end of the tournament the i-th team has x_{i} wins and y_{i} loses $(1 \leq i \leq n)$ prove that: $\sum_{i=1}^{n} x_{i}{ }^{2}=\sum_{i=1}^{n} y_{i}{ }^{2}$

4 Prove that : $\cos 36-\sin 18=\frac{1}{2}$
$5 \quad$ A sphere with ray R is cut by two parallel planes. such that the center of the sphere is outside the region determined by these planes. Let S_{1} and S_{2} be the areas of the intersections, and d the distance between these planes. Find the area of the intersection of the sphere with the plane parallel with these two planes, with equal distance from them.

- \quad Grade 12

1 The sequence $a_{n} n \in \mathbb{N}$ is given in a recursive way with $a_{1}=1, a_{n}=\prod_{i=1}^{n-1} a_{i}+1$, for all $n \geq 2$. Determine the least number M, such that $\sum_{n=1}^{m} \frac{1}{a_{n}}<M$ for all $m \in \mathbb{N}$

2 Solve the system of equations $x+y+z=\pi \tan x \tan z=2 \tan y \tan z=18$
3 Let $a \geq 2$ a fixed natural number, and let a_{n} be the sequence $a_{n}=a^{a \cdot{ }^{a}}$ (e.g $a_{1}=a, a_{2}=a^{a}$, etc.). Prove that $\left(a_{n+1}-a_{n}\right) \mid\left(a_{n+2}-a_{n+1}\right)$ for every natural number n.

4 Prove the identity $\sum_{k=2}^{n} k(k-1)\binom{n}{k}=\binom{n}{2} 2^{n-1}$ for all $n=2,3,4, \ldots$
5 Lines determined by sides $A B$ and $C D$ of the convex quadrilateral $A B C D$ intersect at point P. Prove that $\alpha+\gamma=\beta+\delta$ if and only if $P A \cdot P B=P C \cdot P D$, where $\alpha, \beta, \gamma, \delta$ are the measures of the internal angles of vertices A, B, C, D respectively.

