

AoPS Community

2017 Kosovo National Mathematical Olympiad

www.artofproblemsolving.com/community/c489360

by dcouchman, XbenX, j____d, Duarti

-	Grade 9
1	1. Find all primes of the form $n^3 - 1$.
2	2 .Solve the inequality $ x - 1 - 2 x - 4 > 3 + 2x$
3	3. 3 red birds for 4 days eat 36 grams of seed, 5 blue birds for 3 days eat 60 gram of seed. For how many days could be feed 2 red birds and 4 blue birds with 88 gr seed?
4	4. Find all triples of consecutive numbers ,whose sum of squares is equal to some fourdigit number with all four digits being equal.
5	5. Given the point T in rectangle ABCD, the distances from T to A,B,C is 15,20,25. Find the distance from T to D.
-	Grade 11
1	Find all ordered pairs (a, b) , of natural numbers, where $1 < a, b \le 100$, such that $\frac{1}{\log_a 10} + \frac{1}{\log_b 10}$ is a natural number.
2	Prove that for every positive real a, b, c the inequality holds : $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} + 1 \ge \frac{2\sqrt{2}}{3}(\sqrt{\frac{a+b}{c}} + \sqrt{\frac{b+c}{a}} + \sqrt{\frac{b+c}{a}})$ $\sqrt{\frac{c+a}{b}})$ When does the equality hold?
3	<i>n</i> teams participated in a basketball tournament. Each team has played with each team exactly one game. There was no tie. If in the end of the tournament the <i>i</i> -th team has x_i wins and y_i loses $(1 \le i \le n)$ prove that: $\sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i^2$
4	Prove that : $\cos 36 - \sin 18 = \frac{1}{2}$
5	A sphere with ray R is cut by two parallel planes. such that the center of the sphere is outside the region determined by these planes. Let S_1 and S_2 be the areas of the intersections, and d the distance between these planes. Find the area of the intersection of the sphere with the plane parallel with these two planes, with equal distance from them.

AoPS Community

2017 Kosovo National Mathematical Olympiad

-	Grade 12
1	The sequence $a_n n \in \mathbb{N}$ is given in a recursive way with $a_1 = 1$, $a_n = \prod_{i=1}^{n-1} a_i + 1$, for all $n \ge 2$. Determine the least number M , such that $\sum_{n=1}^m \frac{1}{a_n} < M$ for all $m \in \mathbb{N}$
2	Solve the system of equations $x + y + z = \pi \tan x \tan z = 2 \tan y \tan z = 18$
3	Let $a \ge 2$ a fixed natural number, and let a_n be the sequence $a_n = a^{a^{n^a}}$ (e.g $a_1 = a, a_2 = a^a$, etc.). Prove that $(a_{n+1} - a_n) (a_{n+2} - a_{n+1})$ for every natural number n .
4	Prove the identity $\sum_{k=2}^{n} k(k-1) \binom{n}{k} = \binom{n}{2} 2^{n-1}$ for all $n = 2, 3, 4,$
5	Lines determined by sides AB and CD of the convex quadrilateral $ABCD$ intersect at point P . Prove that $\alpha + \gamma = \beta + \delta$ if and only if $PA \cdot PB = PC \cdot PD$, where $\alpha, \beta, \gamma, \delta$ are the measures of the internal angles of vertices A, B, C, D respectively.

AoPS Online 🔯 AoPS Academy 🐼 AoPS 🕬

2

Art of Problem Solving is an ACS WASC Accredited School.