AoPS Community

BMO TST 2017

www.artofproblemsolving.com/community/c489369
by Duarti

1 Given n numbers different from $0,(n \in \mathbb{N})$ which are arranged randomly. We do the following operation: Choose some consecutive numbers in the given order and change their sign (i.e. $x \rightarrow-x$). What is the minimum number of operations needed, in order to make all the numbers positive for any given initial configuration of the n numbers?

2 Given a random positive integer N. Prove that there exist infinitely many positive integers M whose none of its digits is 0 and such that the sum of the digits of $N \cdot M$ is same as sum of digits M.

3 Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that : $f(x) f(y) f(z)=9 f(z+x y f(z))$, where x, y, z, are three positive real numbers.

4 The incircle of $\triangle A_{0} B_{0} C_{0}$, meets legs $B_{0} C_{0}, C_{0} A_{0}, A_{0} B_{0}$, respectively on points A, B, C, and the incircle of $\triangle A B C$, with center I, meets legs $B C, C A, A B$, on points A_{1}, B_{1}, C_{1}, respectively. We write with $\sigma(A B C)$, and $\sigma\left(A_{1} B_{1} C_{1}\right)$ the areas of $\triangle A B C$, and $\triangle A_{1} B_{1} C_{1}$ respectively. Prove that if $\sigma(A B C)=2 \sigma\left(A_{1} B_{1} C_{1}\right)$, then lines $A A_{0}, B B_{0}, C C_{0}$ are concurrent.
$5 \quad$ Given a set A which contains n elements. For any two distinct subsets A_{1}, A_{2} of the given set A, we fix the number of elements of $A_{1} \cap A_{2}$. Find the sum of all the numbers obtained in the described way.

