AoPS Community

AIME Problems 1997

www.artofproblemsolving.com/community/c4894
by joml88, Melissa, towersfreak2006, denizuzun, fuzzy_logic, rrusczyk

1 How many of the integers between 1 and 1000, inclusive, can be expressed as the difference of the squares of two nonnegative integers?

2 The nine horizontal and nine vertical lines on an 8×8 checkerboard form r rectangles, of which s are squares. The number s / r can be written in the form m / n, where m and n are relatively prime positive integers. Find $m+n$.

3 Sarah intended to multiply a two-digit number and a three-digit number, but she left out the multiplication sign and simply placed the two-digit number to the left of the three-digit number, thereby forming a five-digit number. This number is exactly nine times the product Sarah should have obtained. What is the sum of the two-digit number and the three-digit number?

4 Circles of radii $5,5,8$, and m / n are mutually externally tangent, where m and n are relatively prime positive integers. Find $m+n$.

5 The number r can be expressed as a four-place decimal $0 . a b c d$, where a, b, c, and d represent digits, any of which could be zero. It is desired to approximate r by a fraction whose numerator is 1 or 2 and whose denominator is an integer. The closest such fraction to r is $\frac{2}{7}$. What is the number of possible values for r ?
$6 \quad$ Point B is in the exterior of the regular n-sided polygon $A_{1} A_{2} \cdots A_{n}$, and $A_{1} A_{2} B$ is an equilateral triangle. What is the largest value of n for which A_{n}, A_{1}, and B are consecutive vertices of a regular polygon?

7 A car travels due east at $\frac{2}{3}$ mile per minute on a long, straight road. At the same time, a circular storm, whose radius is 51 miles, moves southeast at $\frac{1}{2} \sqrt{2}$ mile per minute. At time $t=0$, the center of the storm is 110 miles due north of the car. At time $t=t_{1}$ minutes, the car enters the storm circle, and at time $t=t_{2}$ minutes, the car leaves the storm circle. Find $\frac{1}{2}\left(t_{1}+t_{2}\right)$.

8 How many different 4×4 arrays whose entries are all 1 's and -1 's have the property that the sum of the entries in each row is 0 and the sum of the entires in each column is 0 ?
$9 \quad$ Given a nonnegative real number x, let $\langle x\rangle$ denote the fractional part of x; that is, $\langle x\rangle=x-\lfloor x\rfloor$, where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x. Suppose that a is positive, $\left\langle a^{-1}\right\rangle=$ $\left\langle a^{2}\right\rangle$, and $2<a^{2}<3$. Find the value of $a^{12}-144 a^{-1}$.

10 Every card in a deck has a picture of one shape - circle, square, or triangle, which is painted in one of the three colors - red, blue, or green. Furthermore, each color is applied in one of three shades - light, medium, or dark. The deck has 27 cards, with every shape-color-shade combination represented. A set of three cards from the deck is called complementary if all of the following statements are true:
i. Either each of the three cards has a different shape or all three of the card have the same shape.
ii. Either each of the three cards has a different color or all three of the cards have the same color.
iii. Either each of the three cards has a different shade or all three of the cards have the same shade.

How many different complementary three-card sets are there?
11 Let $x=\frac{\sum_{n=1}^{44} \cos n^{\circ}}{\sum_{n=1}^{44} \sin n^{\circ}}$. What is the greatest integer that does not exceed $100 x$?
12 The function f defined by $f(x)=\frac{a x+b}{c x+d}$. where a, b, c and d are nonzero real numbers, has the properties $f(19)=19, f(97)=97$ and $f(f(x))=x$ for all values except $\frac{-d}{c}$. Find the unique number that is not in the range of f.

13 Let S be the set of points in the Cartesian plane that satisfy

$$
|||x|-2|-1|+|||y|-2|-1|=1
$$

If a model of S were built from wire of negligible thickness, then the total length of wire required would be $a \sqrt{b}$, where a and b are positive integers and b is not divisible by the square of any prime number. Find $a+b$.

14 Let v and w be distinct, randomly chosen roots of the equation $z^{1997}-1=0$. Let m / n be the probability that $\sqrt{2+\sqrt{3}} \leq|v+w|$, where m and n are relatively prime positive integers. Find $m+n$.

15 The sides of rectangle $A B C D$ have lengths 10 and 11 . An equilateral triangle is drawn so that no point of the triangle lies outside $A B C D$. The maximum possible area of such a triangle can be written in the form $p \sqrt{q}-r$, where p, q, and r are positive integers, and q is not divisible by the square of any prime number. Find $p+q+r$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http: //maa. org).

