AoPS Community

India National Olympiad 1986

www.artofproblemsolving.com/community/c4912
by Leon

1 A person who left home between 4 p.m. and 5 p.m. returned between 5 p.m. and 6 p.m. and found that the hands of his watch had exactly exchanged place, when did he go out ?

2 Solve

$$
\left\{\begin{array}{l}
\log _{2} x+\log _{4} y+\log _{4} z=2 \\
\log _{3} y+\log _{9} z+\log _{9} x=2 \\
\log _{4} z+\log _{16} x+\log _{16} y=2
\end{array}\right.
$$

3 Two circles with radii a and b respectively touch each other externally. Let c be the radius of a circle that touches these two circles as well as a common tangent to the two circles. Prove that

$$
\frac{1}{\sqrt{c}}=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}
$$

4 Find the least natural number whose last digit is 7 such that it becomes 5 times larger when this last digit is carried to the beginning of the number.

5 If $P(x)$ is a polynomial with integer coefficients and a, b, c, three distinct integers, then show that it is impossible to have $P(a)=b, P(b)=c, P(c)=a$.

6 Construct a quadrilateral which is not a parallelogram, in which a pair of opposite angles and a pair of opposite sides are equal.

7 If a, b, x, y are integers greater than 1 such that a and b have no common factor except 1 and $x^{a}=y^{b}$ show that $x=n^{b}, y=n^{a}$ for some integer n greater than 1 .

8 Suppose A_{1}, \ldots, A_{6} are six sets each with four elements and B_{1}, \ldots, B_{n} are n sets each with two elements, Let $S=A_{1} \cup A_{2} \cup \cdots \cup A_{6}=B_{1} \cup \cdots \cup B_{n}$. Given that each elements of S belogs to exactly four of the A 's and to exactly three of the B^{\prime} s, find n.

9 Show that among all quadrilaterals of a given perimeter the square has the largest area.

