AoPS Community

India National Olympiad 1989

www.artofproblemsolving.com/community/c4915
by makar, MeKnowsNothing, Peter, Evariste-Galois

1 Prove that the Polynomial $f(x)=x^{4}+26 x^{3}+56 x^{2}+78 x+1989$ can't be expressed as a product $f(x)=p(x) q(x)$, where $p(x)$ and $q(x)$ are both polynomial with integral coefficients and with degree at least 1 .

2 Let a, b, c and d be any four real numbers, not all equal to zero. Prove that the roots of the polynomial $f(x)=x^{6}+a x^{3}+b x^{2}+c x+d$ can't all be real.

3 Let A denote a subset of the set $\{1,11,21,31, \ldots, 541,551\}$ having the property that no two elements of A add up to 552 . Prove that A can't have more than 28 elements.
$4 \quad$ Determine all $n \in \mathbb{N}$ for which $-n$ is not the square of any integer, $-\lfloor\sqrt{n}\rfloor^{3}$ divides n^{2}.
5 For positive integers n, define $A(n)$ to be $\frac{(2 n)!}{(n!)^{2}}$. Determine the sets of positive integers n for which
(a) $A(n)$ is an even number,
(b) $A(n)$ is a multiple of 4 .

6 Triangle $A B C$ has incentre I and the incircle touches $B C, C A$ at D, E respectively. Let $B I$ meet $D E$ at G. Show that $A G$ is perpendicular to $B G$.

7 Let A be one of the two points of intersection of two circles with centers X, Y respectively. The tangents at A to the two circles meet the circles again at B, C. Let a point P be located so that $P X A Y$ is a parallelogram. Show that P is also the circumcenter of triangle $A B C$.

