AoPS Community

India National Olympiad 1991

www.artofproblemsolving.com/community/c4917
by Rushil, Singular, shobber, Xixas, blahblahblah, yetti, 1234567890, Ali.Kh, jgnr

1 Find the number of positive integers n for which
(i) $n \leq 1991$;
(ii) 6 is a factor of $\left(n^{2}+3 n+2\right)$.

2 Given an acute-angled triangle $A B C$, let points $A^{\prime}, B^{\prime}, C^{\prime}$ be located as follows: A^{\prime} is the point where altitude from A on $B C$ meets the outwards-facing semicircle on $B C$ as diameter. Points B^{\prime}, C^{\prime} are located similarly.
Prove that $A\left[B C A^{\prime}\right]^{2}+A\left[C A B^{\prime}\right]^{2}+A\left[A B C^{\prime}\right]^{2}=A[A B C]^{2}$ where $A[A B C]$ is the area of triangle $A B C$.

3 Given a triangle $A B C$ let

$$
\begin{aligned}
& x=\tan \left(\frac{B-C}{2}\right) \tan \left(\frac{A}{2}\right) \\
& y=\tan \left(\frac{C-A}{2}\right) \tan \left(\frac{B}{2}\right) \\
& z=\tan \left(\frac{A-B}{2}\right) \tan \left(\frac{C}{2}\right) .
\end{aligned}
$$

Prove that $x+y+z+x y z=0$.
4 Let a, b, c be real numbers with $0<a<1,0<b<1,0<c<1$, and $a+b+c=2$.
Prove that $\frac{a}{1-a} \cdot \frac{b}{1-b} \cdot \frac{c}{1-c} \geq 8$.
5 Triangle $A B C$ has an incenter I. Let points X, Y be located on the line segments $A B, A C$ respectively, so that $B X \cdot A B=I B^{2}$ and $C Y \cdot A C=I C^{2}$. Given that the points X, I, Y lie on a straight line, find the possible values of the measure of angle A.

6 (i) Determine the set of all positive integers n for which 3^{n+1} divides $2^{3^{n}}+1$;
(ii) Prove that 3^{n+2} does not divide $2^{3^{n}}+1$ for any positive integer n.

7 Solve the following system for real x, y, z

$$
\begin{array}{rlc}
x+y-z & = & 4 \\
\left\{x^{2}-y^{2}+z^{2}\right. & = & -4 \\
x y z & = & 6 .
\end{array}
$$

8 There are 10 objects of total weight 20 , each of the weights being a positive integers. Given that none of the weights exceeds 10 , prove that the ten objects can be divided into two groups that balance each other when placed on 2 pans of a balance.

9 Triangle $A B C$ has an incenter $I \mathrm{I}$ its incircle touches the side $B C$ at T. The line through T parallel to $I A$ meets the incircle again at S and the tangent to the incircle at S meets $A B, A C$ at points C^{\prime}, B^{\prime} respectively. Prove that triangle $A B^{\prime} C^{\prime}$ is similar to triangle $A B C$.

10 For any positive integer n, let $s(n)$ denote the number of ordered pairs (x, y) of positive integers for which $\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$. Determine the set of positive integers for which $s(n)=5$

