Art of Problem Solving

AoPS Community

India National Olympiad 1992

www.artofproblemsolving.com/community/c4918 by Rushil, socrates, Jan

1 In a triangle $A B C, \angle A=2 \cdot \angle B$. Prove that $a^{2}=b(b+c)$.
2 If $x, y, z \in \mathbb{R}$ such that $x+y+z=4$ and $x^{2}+y^{2}+z^{2}=6$, then show that each of x, y, z lies in the closed interval $\left[\frac{2}{3}, 2\right]$. Can x attain the extreme value $\frac{2}{3}$ or 2 ?

3 Find the remainder when 19^{92} is divided by 92.
4 Find the number of permutations $\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$ of $1,2,3,4,5,6$ such that for any $k, 1 \leq$ $k \leq 5,\left(p_{1}, \ldots, p_{k}\right)$ does not form a permutation of $1,2, \ldots, k$.

5 Two circles C_{1} and C_{2} intersect at two distinct points P, Q in a plane. Let a line passing through P meet the circles C_{1} and C_{2} in A and B respectively. Let Y be the midpoint of $A B$ and let $Q Y$ meet the cirlces C_{1} and C_{2} in X and Z respectively. Show that Y is also the midpoint of $X Z$.

6 Let $f(x)$ be a polynomial in x with integer coefficients and suppose that for five distinct integers a_{1}, \ldots, a_{5} one has $f\left(a_{1}\right)=f\left(a_{2}\right)=\ldots=f\left(a_{5}\right)=2$. Show that there does not exist an integer b such that $f(b)=9$.

7 Let $n \geq 3$ be an integer. Find the number of ways in which one can place the numbers $1,2,3, \ldots, n^{2}$ in the n^{2} squares of a $n \times n$ chesboard, one on each, such that the numbers in each row and in each column are in arithmetic progression.
$8 \quad$ Determine all pairs (m, n) of positive integers for which $2^{m}+3^{n}$ is a perfect square.
9 Let $A_{1}, A_{2}, \ldots, A_{n}$ be an n-sided regular polygon. If $\frac{1}{A_{1} A_{2}}=\frac{1}{A_{1} A_{3}}+\frac{1}{A_{1} A_{4}}$, find n.
10 Determine all functions $f: \mathbb{R}-[0,1] \rightarrow \mathbb{R}$ such that

$$
f(x)+f\left(\frac{1}{1-x}\right)=\frac{2(1-2 x)}{x(1-x)} .
$$

