AoPS Community

Japan MO Finals 2017

www.artofproblemsolving.com/community/c491862
by maple116

1 Let a, b, c be positive integers. Prove that $l c m(a, b) \neq l c m(a+c, b+c)$.
2 Let N be a positive integer. There are positive integers $a_{1}, a_{2}, \cdots, a_{N}$ and none of them are multiples of 2^{N+1}. For each integer $n \geq N+1$, set a_{n} as below:

If the remainder of a_{k} divided by 2^{n} is the smallest amongst the remainders of a_{1}, \cdots, a_{n-1} divided by 2^{n}, set $a_{n}=2 a_{k}$. If there are several integers k which satisfy the above condition, put the biggest one.

Prove the existence of a positive integer M which satisfies $a_{n}=a_{M}$ for $n \geq M$.
3 Let $A B C$ be an acute-angled triangle with the circumcenter O. Let D, E and F be the feet of the altitudes from A, B and C, respectively, and let M be the midpoint of $B C . A D$ and $E F$ meet at $X, A O$ and $B C$ meet at Y, and let Z be the midpoint of $X Y$. Prove that A, Z, M are collinear.

4 Let $n \geq 3$ be an integer. There are n people, and a meeting which at least 3 people attend is held everyday. Each attendant shake hands with the rest attendants at every meeting. After the nth meeting, every pair of the n people shook hands exactly once. Prove that every meeting was attended by the same number of attendants.

5 Let $x_{1}, x_{2}, \cdots, x_{1000}$ be integers, and $\sum_{i=1}^{1000} x_{i}^{k}$ are all multiples of 2017 for any positive integers $k \leq 672$. Prove that $x_{1}, x_{2}, \cdots, x_{1000}$ are all multiples of 2017 .
Note: 2017 is a prime number.

