AoPS Community

India National Olympiad 1993

www.artofproblemsolving.com/community/c4919
by Rushil, yptsoi, pbornsztein, perfect_radio, darij grinberg

1 The diagonals $A C$ and $B D$ of a cyclic quadrilateral $A B C D$ intersect at P. Let O be the circumcenter of triangle $A P B$ and H be the orthocenter of triangle $C P D$. Show that the points H, P, O are collinear.

2 Let $p(x)=x^{2}+a x+b$ be a quadratic polynomial with $a, b \in \mathbb{Z}$. Given any integer n, show that there is an integer M such that $p(n) p(n+1)=p(M)$.

3 If $a, b, c, d \in \mathbb{R}_{+}$and $a+b+c+d=1$, show that

$$
a b+b c+c d \leq \frac{1}{4}
$$

4 Let $A B C$ be a triangle in a plane π. Find the set of all points P (distinct from A, B, C) in the plane π such that the circumcircles of triangles $A B P, B C P, C A P$ have the same radii.

5 Show that there is a natural number n such that n ! when written in decimal notation ends exactly in 1993 zeros.
$6 \quad$ Let $A B C$ be a triangle right-angled at A and S be its circumcircle. Let S_{1} be the circle touching the lines $A B$ and $A C$, and the circle S internally. Further, let S_{2} be the circle touching the lines $A B$ and $A C$ and the circle S externally. If r_{1}, r_{2} be the radii of S_{1}, S_{2} prove that $r_{1} \cdot r_{2}=4 A[A B C]$.

7 Let $A=\{1,2,3, \ldots, 100\}$ and B be a subset of A having 53 elements. Show that B has 2 distinct elements x and y whose sum is divisible by 11 .

8 Let f be a bijective function from $A=\{1,2, \ldots, n\}$ to itself. Show that there is a positive integer M such that $f^{M}(i)=f(i)$ for each i in A, where f^{M} denotes the composition $f \circ f \circ \cdots \circ f M$ times.

9 Show that there exists a convex hexagon in the plane such that
(i) all its interior angles are equal;
(ii) its sides are $1,2,3,4,5,6$ in some order.

