AoPS Community

India National Olympiad 1995

www.artofproblemsolving.com/community/c4921
by Rushil, yetti

1 In an acute angled triangle $A B C, \angle A=30^{\circ}, H$ is the orthocenter, and M is the midpoint of $B C$. On the line $H M$, take a point T such that $H M=M T$. Show that $A T=2 B C$.

2 Show that there are infintely many pairs (a, b) of relatively prime integers (not necessarily positive) such that both the equations

$$
\begin{array}{r}
x^{2}+a x+b=0 \\
x^{2}+2 a x+b=0
\end{array}
$$

have integer roots.
3 Show that the number of 3 -element subsets $\{a, b, c\}$ of $\{1,2,3, \ldots, 63\}$ with $a+b+c<95$ is less than the number of those with $a+b+c \geq 95$.

4 Let $A B C$ be a triangle and a circle Γ^{\prime} be drawn lying outside the triangle, touching its incircle Γ externally, and also the two sides $A B$ and $A C$. Show that the ratio of the radii of the circles Γ^{\prime} and Γ is equal to $\tan ^{2}\left(\frac{\pi-A}{4}\right)$.

5 Let $n \geq 2$. Let $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ be n real numbers all less than 1 and such that $\left|a_{k}-a_{k+1}\right|<1$ for $1 \leq k \leq n-1$. Show that

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{4}}+\ldots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}}<2 n-1 .
$$

6 Find all primes p for which the quotient

$$
\frac{2^{p-1}-1}{p}
$$

is a square.

