AoPS Community

India National Olympiad 1996

www.artofproblemsolving.com/community/c4922
by Rushil

1 a) Given any positive integer n, show that there exist distint positive integers x and y such that $x+j$ divides $y+j$ for $j=1,2,3, \ldots, n$;
b) If for some positive integers x and $y, x+j$ divides $y+j$ for all positive integers j, prove that $x=y$.

2 Let C_{1} and C_{2} be two concentric circles in the plane with radii R and $3 R$ respectively. Show that the orthocenter of any triangle inscribed in circle C_{1} lies in the interior of circle C_{2}. Conversely, show that every point in the interior of C_{2} is the orthocenter of some triangle inscribed in C_{1}.

3 Solve the following system for real a, b, c, d, e :

$$
\left\{\begin{aligned}
3 a & =(b+c+d)^{3} \\
3 b & =(c+d+e)^{3} \\
3 c & =(d+e+a)^{3} \\
3 d & =(e+a+b)^{3} \\
3 e & =(a+b+c)^{3}
\end{aligned}\right.
$$

4 Let X be a set containing n elements. Find the number of ordered triples (A, B, C) of subsets of X such that A is a subset of B and B is a proper subset of C.
$5 \quad$ Define a sequence $\left(a_{n}\right)_{n \geq 1}$ by $a_{1}=1$ and $a_{2}=2$ and $a_{n+2}=2 a_{n+1}-a_{n}+2$ for $n \geq 1$. prove that for any $m, a_{m} a_{m+1}$ is also a term in this sequence.

6 There is a $2 n \times 2 n$ array (matrix) consisting of $0^{\prime} s$ and $1^{\prime} s$ and there are exactly $3 n$ zeroes. Show that it is possible to remove all the zeroes by deleting some n rows and some n columns.

