

AoPS Community

India National Olympiad 1998

www.artofproblemsolving.com/community/c4924 by Rushil, darij grinberg, maxal, Agrippina, Arne, tt

- In a circle C_1 with centre O, let AB be a chord that is not a diameter. Let M be the midpoint of this chord AB. Take a point T on the circle C_2 with OM as diameter. Let the tangent to C_2 at T meet C_1 at P. Show that $PA^2 + PB^2 = 4 \cdot PT^2$.
- Let a and b be two positive rational numbers such that $\sqrt[3]{a} + \sqrt[3]{b}$ is also a rational number. Prove that $\sqrt[3]{a}$ and $\sqrt[3]{b}$ themselves are rational numbers.
- Let p,q,r,s be four integers such that s is not divisible by s. If there is an integer s such that pa^3+qa^2+ra+s is divisible be s, prove that there is an integer s such that sb^3+rb^2+qb+p is also divisible by s.
- Suppose ABCD is a cyclic quadrilateral inscribed in a circle of radius one unit. If $AB \cdot BC \cdot CD \cdot DA \ge 4$, prove that ABCD is a square.
- 5 Suppose a, b, c are three rela numbers such that the quadratic equation

$$x^{2} - (a+b+c)x + (ab+bc+ca) = 0$$

has roots of the form $\alpha+i\beta$ where $\alpha>0$ and $\beta\neq 0$ are real numbers. Show that

- (i) The numbers a,b,c are all positive.
- (ii) The numbers $\sqrt{a}, \sqrt{b}, \sqrt{c}$ form the sides of a triangle.
- It is desired to choose n integers from the collection of 2n integers, namely, $0,0,1,1,2,2,\ldots,n-1,n-1$ such that the average of these n chosen integers is itself an integer and as minimum as possible. Show that this can be done for each positive integer n and find this minimum value for each n.