AoPS Community

India National Olympiad 1998

www.artofproblemsolving.com/community/c4924
by Rushil, darij grinberg, maxal, Agrippina, Arne, tt

1 In a circle C_{1} with centre O, let $A B$ be a chord that is not a diameter. Let M be the midpoint of this chord $A B$. Take a point T on the circle C_{2} with $O M$ as diameter. Let the tangent to C_{2} at T meet C_{1} at P. Show that $P A^{2}+P B^{2}=4 \cdot P T^{2}$.

2 Let a and b be two positive rational numbers such that $\sqrt[3]{a}+\sqrt[3]{b}$ is also a rational number. Prove that $\sqrt[3]{a}$ and $\sqrt[3]{b}$ themselves are rational numbers.

3 Let p, q, r, s be four integers such that s is not divisible by 5 . If there is an integer a such that $p a^{3}+q a^{2}+r a+s$ is divisible be 5, prove that there is an integer b such that $s b^{3}+r b^{2}+q b+p$ is also divisible by 5 .

4 Suppose $A B C D$ is a cyclic quadrilateral inscribed in a circle of radius one unit. If $A B \cdot B C$. $C D \cdot D A \geq 4$, prove that $A B C D$ is a square.

5 Suppose a, b, c are three rela numbers such that the quadratic equation

$$
x^{2}-(a+b+c) x+(a b+b c+c a)=0
$$

has roots of the form $\alpha+i \beta$ where $\alpha>0$ and $\beta \neq 0$ are real numbers. Show that
(i) The numbers a, b, c are all positive.
(ii) The numbers $\sqrt{a}, \sqrt{b}, \sqrt{c}$ form the sides of a triangle.

6 It is desired to choose n integers from the collection of $2 n$ integers, namely, $0,0,1,1,2,2, \ldots, n-$ $1, n-1$ such that the average of these n chosen integers is itself an integer and as minimum as possible. Show that this can be done for each positive integer n and find this minimum value for each n.

