AoPS Community

India National Olympiad 2000

www.artofproblemsolving.com/community/c4926
by Mathx, grobber, Rushil, Together

1 The incircle of $A B C$ touches $B C, C A, A B$ at K, L, M respectively. The line through A parallel to $L K$ meets $M K$ at P, and the line through A parallel to $M K$ meets $L K$ at Q. Show that the line $P Q$ bisects $A B$ and bisects $A C$.

2 Solve for integers x, y, z :

$$
\left\{\begin{array}{c}
x+y=1-z \\
x^{3}+y^{3}=1-z^{2}
\end{array}\right.
$$

3 If a, b, c, x are real numbers such that $a b c \neq 0$ and

$$
\frac{x b+(1-x) c}{a}=\frac{x c+(1-x) a}{b}=\frac{x a+(1-x) b}{c},
$$

then prove that $a=b=c$.
4 In a convex quadrilateral $P Q R S, P Q=R S,(\sqrt{3}+1) Q R=S P$ and $\angle R S P-\angle S Q P=30^{\circ}$. Prove that $\angle P Q R-\angle Q R S=90^{\circ}$.

5 Let a, b, c be three real numbers such that $1 \geq a \geq b \geq c \geq 0$. prove that if λ is a root of the cubic equation $x^{3}+a x^{2}+b x+c=0$ (real or complex), then $|\lambda| \leq 1$.

6 For any natural numbers $n,(n \geq 3)$, let $f(n)$ denote the number of congruent integer-sided triangles with perimeter n. Show that
(i) $f(1999)>f(1996)$;
(ii) $f(2000)=f(1997)$.

