AoPS Community

India National Olympiad 2001

www.artofproblemsolving.com/community/c4927
by Rushil

1 Let $A B C$ be a triangle in which no angle is 90°. For any point P in the plane of the triangle, let A_{1}, B_{1}, C_{1} denote the reflections of P in the sides $B C, C A, A B$ respectively. Prove that
(i) If P is the incenter or an excentre of $A B C$, then P is the circumenter of $A_{1} B_{1} C_{1}$;
(ii) If P is the circumcentre of $A B C$, then P is the orthocentre of $A_{1} B_{1} C_{1}$;
(iii) If P is the orthocentre of $A B C$, then P is either the incentre or an excentre of $A_{1} B_{1} C_{1}$.

2 Show that the equation $x^{2}+y^{2}+z^{2}=(x-y)(y-z)(z-x)$ has infintely many solutions in integers x, y, z.

3 If a, b, c are positive real numbers such that $a b c=1$, Prove that

$$
a^{b+c} b^{c+a} c^{a+b} \leq 1 .
$$

4 Show that given any nine integers, we can find four, a, b, c, d such that $a+b-c-d$ is divisible by 20 . Show that this is not always true for eight integers.
$5 \quad A B C$ is a triangle. M is the midpoint of $B C . \angle M A B=\angle C$, and $\angle M A C=15^{\circ}$. Show that $\angle A M C$ is obtuse. If O is the circumcenter of $A D C$, show that $A O D$ is equilateral.
$6 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)=f(x) f(y) f(x y)$ for all $x, y \in \mathbb{R}$.

