AoPS Community

India National Olympiad 2002

www.artofproblemsolving.com/community/c4928
by Rushil, Fermat -Euler, seshadri

1 For a convex hexagon $A B C D E F$ in which each pair of opposite sides is unequal, consider the following statements.
(a_{1}) $A B$ is parallel to $D E$. $\left(a_{2}\right) A E=B D$.
$\left(b_{1}\right) B C$ is parallel to $E F .\left(b_{2}\right) B F=C E$.
$\left(c_{1}\right) C D$ is parallel to $F A$. $\left(c_{2}\right) C A=D F$.
(a) Show that if all six of these statements are true then the hexagon is cyclic.
(b) Prove that, in fact, five of the six statements suffice.

2 Find the smallest positive value taken by $a^{3}+b^{3}+c^{3}-3 a b c$ for positive integers a, b, c. Find all a, b, c which give the smallest value

3 If x, y are positive reals such that $x+y=2$ show that $x^{3} y^{3}\left(x^{3}+y^{3}\right) \leq 2$.
4 Is it true that there exist 100 lines in the plane, no three concurrent, such that they intersect in exactly 2002 points?

5 Do there exist distinct positive integers a, b, c such that $a, b, c,-a+b+c, a-b+c, a+b-c$, $a+b+c$ form an arithmetic progression (in some order).

6 The numbers $1,2,3, \ldots, n^{2}$ are arranged in an $n \times n$ array, so that the numbers in each row increase from left to right, and the numbers in each column increase from top to bottom. Let $a_{i j}$ be the number in position i, j. Let b_{j} be the number of possible values for $a_{j j}$. Show that

$$
b_{1}+b_{2}+\cdots+b_{n}=\frac{n\left(n^{2}-3 n+5\right)}{3} .
$$

