AoPS Community

India National Olympiad 2004

www.artofproblemsolving.com/community/c4930
by Fermat -Euler
$1 A B C D$ is a convex quadrilateral. K, L, M, N are the midpoints of the sides $A B, B C, C D, D A$. $B D$ bisects $K M$ at $Q . Q A=Q B=Q C=Q D$, and $\frac{L K}{L M}=\frac{C D}{C B}$. Prove that $A B C D$ is a square
$2 \quad p>3$ is a prime. Find all integers a, b, such that $a^{2}+3 a b+2 p(a+b)+p^{2}=0$.
3 If a is a real root of $x^{5}-x^{3}+x-2=0$, show that $\left[a^{6}\right]=3$
$4 A B C$ is a triangle, with sides a, b, c, circumradius R, and exradii r_{a}, r_{b}, r_{c} If $2 R \leq r_{a}$, show that $a>b, a>c, 2 R>r_{b}$, and $2 R>r_{c}$.

5 S is the set of all (a, b, c, d, e, f) where a, b, c, d, e, f are integers such that $a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=f^{2}$. Find the largest k which divides abcdef for all members of S.

6 Show that the number of 5-tuples ($a, b, c, d, e)$ such that $a b c d e=5(b c d e+a c d e+a b d e+a b c e+a b c d)$ is odd

