

## **AoPS Community**

## India National Olympiad 2004

www.artofproblemsolving.com/community/c4930 by Fermat -Euler

| 6 | Show that the number of 5-tuples (a, b, c, d, e) such that $abcde = 5(bcde + acde + abde + abcd + abcd)$ is odd                                                                                                                                                                                  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | S is the set of all ( <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> , <i>f</i> ) where <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> , <i>f</i> are integers such that $a^2+b^2+c^2+d^2+e^2=f^2$ .<br>Find the largest <i>k</i> which divides abcdef for all members of <i>S</i> . |
| 4 | ABC is a triangle, with sides $a, b, c$ , circumradius $R$ , and exradii $r_a, r_b, r_c \text{lf } 2R \le r_a$ , show that $a > b, a > c, 2R > r_b$ , and $2R > r_c$ .                                                                                                                           |
| 3 | If a is a real root of $x^5 - x^3 + x - 2 = 0$ , show that $[a^6] = 3$                                                                                                                                                                                                                           |
| 2 | $p > 3$ is a prime. Find all integers $a$ , $b$ , such that $a^2 + 3ab + 2p(a + b) + p^2 = 0$ .                                                                                                                                                                                                  |
| 1 | ABCD is a convex quadrilateral. K, L, M, N are the midpoints of the sides AB, BC, CD, DA.<br>BD bisects KM at Q. $QA = QB = QC = QD$ , and $\frac{LK}{LM} = \frac{CD}{CB}$ . Prove that ABCD is a square                                                                                         |

AoPS Online 🟟 AoPS Academy 🔯 AoPS 🕬