## AoPS Community

## India National Olympiad 2005

www.artofproblemsolving.com/community/c4931
by Rushil, shobber, silouan, Skyward_Sea, Diarmuid

1 Let $M$ be the midpoint of side $B C$ of a triangle $A B C$. Let the median $A M$ intersect the incircle of $A B C$ at $K$ and $L, K$ being nearer to $A$
than $L$. If $A K=K L=L M$, prove that the sides of triangle $A B C$ are in the ratio $5: 10: 13$ in some order.

2 Let $\alpha$ and $\beta$ be positive integers such that $\frac{43}{197}<\frac{\alpha}{\beta}<\frac{17}{77}$. Find the minimum possible value of $\beta$.

3 Let $p, q, r$ be positive real numbers, not all equal, such that some two of the equations

$$
\begin{aligned}
p x^{2}+2 q x+r & =0 \\
q x^{2}+2 r x+p & =0 \\
r x^{2}+2 p x+q & =0
\end{aligned}
$$

have a common root, say $\alpha$. Prove that
a) $\alpha$ is real and negative;
$b$ ) the remaining third quadratic equation has non-real roots.
4 All possible 6-digit numbers, in each of which the digits occur in nonincreasing order (from left to right, e.g. 877550 ) are written as a sequence in increasing order. Find the 2005 -th number in this sequence.

5 Let $x_{1}$ be a given positive integer. A sequence $\left\{x_{n}\right\}_{n \geq 1}$ of positive integers is such that $x_{n}$, for $n \geq 2$, is obtained from $x_{n-1}$ by adding some nonzero digit of $x_{n-1}$. Prove that
a) the sequence contains an even term;
b) the sequence contains infinitely many even terms.
$6 \quad$ Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f\left(x^{2}+y f(z)\right)=x f(x)+z f(y),
$$

for all $x, y, z \in \mathbb{R}$.

