

AoPS Community

India National Olympiad 2005

www.artofproblemsolving.com/community/c4931

by Rushil, shobber, silouan, Skyward_Sea, Diarmuid

- 1 Let *M* be the midpoint of side *BC* of a triangle *ABC*. Let the median *AM* intersect the incircle of *ABC* at *K* and *L*, *K* being nearer to *A* than *L*. If AK = KL = LM, prove that the sides of triangle *ABC* are in the ratio 5:10:13 in some order.
- **2** Let α and β be positive integers such that $\frac{43}{197} < \frac{\alpha}{\beta} < \frac{17}{77}$. Find the minimum possible value of β .
- **3** Let p, q, r be positive real numbers, not all equal, such that some two of the equations

 $px^{2} + 2qx + r = 0$ $qx^{2} + 2rx + p = 0$ $rx^{2} + 2px + q = 0.$

have a common root, say α . Prove that

 $a) \alpha$ is real and negative;

b) the remaining third quadratic equation has non-real roots.

- 4 All possible 6-digit numbers, in each of which the digits occur in nonincreasing order (from left to right, e.g. 877550) are written as a sequence in increasing order. Find the 2005-th number in this sequence.
- **5** Let x_1 be a given positive integer. A sequence $\{x_n\}_{n\geq 1}$ of positive integers is such that x_n , for $n \geq 2$, is obtained from x_{n-1} by adding some nonzero digit of x_{n-1} . Prove that

a) the sequence contains an even term;

b) the sequence contains infinitely many even terms.

6 Find all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$f(x^2 + yf(z)) = xf(x) + zf(y),$$

for all $x, y, z \in \mathbb{R}$.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.