AoPS Community

India National Olympiad 2006

www.artofproblemsolving.com/community/c4932
by Vihang, Farenhajt, campos, pavel kozlov

- February 5th

1 In a non equilateral triangle $A B C$ the sides a, b, c form an arithmetic progression. Let I be the incentre and O the circumcentre of the triangle $A B C$. Prove that
(1) $I O$ is perpendicular to $B I$;
(2) If $B I$ meets $A C$ in K, and D, E are the midpoints of $B C, B A$ respectively then I is the circumcentre of triangle $D K E$.

2 Prove that for every positive integer n there exists a unique ordered pair (a, b) of positive integers such that

$$
n=\frac{1}{2}(a+b-1)(a+b-2)+a .
$$

3 Let $X=\mathbb{Z}^{3}$ denote the set of all triples (a, b, c) of integers. Define $f: X \rightarrow X$ by

$$
f(a, b, c)=(a+b+c, a b+b c+c a, a b c) .
$$

Find all triples (a, b, c) such that

$$
f(f(a, b, c))=(a, b, c) .
$$

4 Some 46 squares are randomly chosen from a 9×9 chess board and colored in red. Show that there exists a 2×2 block of 4 squares of which at least three are colored in red.

5 In a cyclic quadrilateral $A B C D, A B=a, B C=b, C D=c, \angle A B C=120^{\circ}$ and $\angle A B D=30^{\circ}$. Prove that
(1) $c \geq a+b$;
(2) $|\sqrt{c+a}-\sqrt{c+b}|=\sqrt{c-a-b}$.

6 (a) Prove that if n is a integer such that $n \geq 4011^{2}$ then there exists an integer l such that

$$
n<l^{2}<\left(1+\frac{1}{2005}\right) n .
$$

(b) Find the smallest positive integer M for which whenever an integer n is such that $n \geq M$ then there exists an integer l such that

$$
n<l^{2}<\left(1+\frac{1}{2005}\right) n .
$$

