

AoPS Community

2006 India National Olympiad

India National Olympiad 2006

www.artofproblemsolving.com/community/c4932 by Vihang, Farenhajt, campos, pavel kozlov

- February 5th
- **1** In a non equilateral triangle *ABC* the sides *a*, *b*, *c* form an arithmetic progression. Let *I* be the incentre and *O* the circumcentre of the triangle *ABC*. Prove that

(1) *IO* is perpendicular to *BI*;

(2) If BI meets AC in K, and D, E are the midpoints of BC, BA respectively then I is the circumcentre of triangle DKE.

2 Prove that for every positive integer n there exists a unique ordered pair (a, b) of positive integers such that

$$n = \frac{1}{2}(a+b-1)(a+b-2) + a.$$

3 Let $X = \mathbb{Z}^3$ denote the set of all triples (a, b, c) of integers. Define $f : X \to X$ by

$$f(a, b, c) = (a + b + c, ab + bc + ca, abc).$$

Find all triples (a, b, c) such that

$$f(f(a, b, c)) = (a, b, c).$$

- 4 Some 46 squares are randomly chosen from a 9×9 chess board and colored in red. Show that there exists a 2×2 block of 4 squares of which at least three are colored in red.
- 5 In a cyclic quadrilateral *ABCD*, AB = a, BC = b, CD = c, $\angle ABC = 120^{\circ}$ and $\angle ABD = 30^{\circ}$. Prove that
 - (1) $c \ge a + b$;
 - (2) $|\sqrt{c+a} \sqrt{c+b}| = \sqrt{c-a-b}.$
- 6 (a) Prove that if n is a integer such that $n \ge 4011^2$ then there exists an integer l such that

$$n < l^2 < (1 + \frac{1}{2005})n.$$

AoPS Community

(b) Find the smallest positive integer M for which whenever an integer n is such that $n \ge M$ then there exists an integer l such that

$$n < l^2 < (1 + \frac{1}{2005})n.$$

Act of Problem Solving is an ACS WASC Accredited School.