

AoPS Community

India National Olympiad 2007

www.artofproblemsolving.com/community/c4933 by Rijul saini, Sathej

1 In a triangle *ABC* right-angled at *C*, the median through *B* bisects the angle between *BA* and the bisector of $\angle B$. Prove that

$$\frac{5}{2} < \frac{AB}{BC} < 3$$

2 Let *n* be a natural number such that $n = a^2 + b^2 + c^2$ for some natural numbers a, b, c. Prove that

$$9n = (p_1a + q_1b + r_1c)^2 + (p_2a + q_2b + r_2c)^2 + (p_3a + q_3b + r_3c)^2$$

where p_j 's, q_j 's, r_j 's are all **nonzero** integers. Further, if 3 does **not** divide at least one of a, b, c, prove that 9n can be expressed in the form $x^2 + y^2 + z^2$, where x, y, z are natural numbers **none** of which is divisible by 3.

3 Let *m* and *n* be positive integers such that $x^2 - mx + n = 0$ has real roots α and β .

Prove that α and β are integers if and only if $[m\alpha] + [m\beta]$ is the square of an integer.

(Here [x] denotes the largest integer not exceeding x)

4 Let $\sigma = (a_1, a_2, \dots, a_n)$ be permutation of $(1, 2, \dots, n)$. A pair (a_i, a_j) is said to correspond to an **inversion** of σ if i < j but $a_i > a_j$. How many permutations of $(1, 2, \dots, n)$, $n \ge 3$, have exactly two inversions?

For example, In the permutation (2, 4, 5, 3, 1), there are 6 inversions corresponding to the pairs (2, 1), (4, 3), (4, 1), (5, 3), (5, 1), (3, 1).

5 Let ABC be a triangle in which AB = AC. Let D be the midpoint of BC and P be a point on AD. Suppose E is the foot of perpendicular from P on AC. Define

$$\frac{AP}{PD} = \frac{BP}{PE} = \lambda, \quad \frac{BD}{AD} = m, \quad z = m^2(1+\lambda)$$

Prove that

$$z^{2} - (\lambda^{3} - \lambda^{2} - 2)z + 1 = 0$$

Hence show that $\lambda \geq 2$ and $\lambda = 2$ if and only if ABC is equilateral.

AoPS Community

2007 India National Olympiad

$$(x+y+z)^{2} (yz+zx+xy)^{2} \leq 3 (y^{2}+yz+z^{2}) (z^{2}+zx+x^{2}) (x^{2}+xy+y^{2}).$$

Act of Problem Solving is an ACS WASC Accredited School.

2