AoPS Community

India National Olympiad 2007

www.artofproblemsolving.com/community/c4933
by Rijul saini, Sathej

1 In a triangle $A B C$ right-angled at C, the median through B bisects the angle between $B A$ and the bisector of $\angle B$. Prove that

$$
\frac{5}{2}<\frac{A B}{B C}<3
$$

2 Let n be a natural number such that $n=a^{2}+b^{2}+c^{2}$ for some natural numbers a, b, c. Prove that

$$
9 n=\left(p_{1} a+q_{1} b+r_{1} c\right)^{2}+\left(p_{2} a+q_{2} b+r_{2} c\right)^{2}+\left(p_{3} a+q_{3} b+r_{3} c\right)^{2}
$$

where p_{j} 's, q_{j} 's, r_{j} 's are all nonzero integers. Further, if 3 does not divide at least one of a, b, c, prove that $9 n$ can be expressed in the form $x^{2}+y^{2}+z^{2}$, where x, y, z are natural numbers none of which is divisible by 3 .
$3 \quad$ Let m and n be positive integers such that $x^{2}-m x+n=0$ has real roots α and β.
Prove that α and β are integers if and only if $[m \alpha]+[m \beta]$ is the square of an integer.
(Here $[x]$ denotes the largest integer not exceeding x)
4 Let $\sigma=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ be permutation of $(1,2, \cdots, n)$. A pair $\left(a_{i}, a_{j}\right)$ is said to correspond to an inversion of σ if $i<j$ but $a_{i}>a_{j}$. How many permutations of $(1,2, \cdots, n), n \geq 3$, have exactly two inversions?

For example, In the permutation ($2,4,5,3,1$), there are 6 inversions corresponding to the pairs $(2,1),(4,3),(4,1),(5,3),(5,1),(3,1)$.
$5 \quad$ Let $A B C$ be a triangle in which $A B=A C$. Let D be the midpoint of $B C$ and P be a point on $A D$. Suppose E is the foot of perpendicular from P on $A C$. Define

$$
\frac{A P}{P D}=\frac{B P}{P E}=\lambda, \quad \frac{B D}{A D}=m, \quad z=m^{2}(1+\lambda)
$$

Prove that

$$
z^{2}-\left(\lambda^{3}-\lambda^{2}-2\right) z+1=0
$$

Hence show that $\lambda \geq 2$ and $\lambda=2$ if and only if $A B C$ is equilateral.

6 If x, y, z are positive real numbers, prove that

$$
(x+y+z)^{2}(y z+z x+x y)^{2} \leq 3\left(y^{2}+y z+z^{2}\right)\left(z^{2}+z x+x^{2}\right)\left(x^{2}+x y+y^{2}\right) .
$$

