AoPS Community

India National Olympiad 2008

www.artofproblemsolving.com/community/c4934
by Chronoz, manjil, Rijul saini, makar

1 Let $A B C$ be triangle, I its in-center; A_{1}, B_{1}, C_{1} be the reflections of I in $B C, C A, A B$ respectively. Suppose the circum-circle of triangle $A_{1} B_{1} C_{1}$ passes through A. Prove that B_{1}, C_{1}, I, I_{1} are concylic, where I_{1} is the in-center of triangle A_{1}, B_{1}, C_{1}.

2 Find all triples (p, x, y) such that $p^{x}=y^{4}+4$, where p is a prime and x and y are natural numbers.

3 Let A be a set of real numbers such that A has at least four elements. Suppose A has the property that $a^{2}+b c$ is a rational number for all distinct numbers a, b, c in A. Prove that there exists a positive integer M such that $a \sqrt{M}$ is a rational number for every a in A.

4 All the points with integer coordinates in the $x y$-Plane are coloured using three colours, red, blue and green, each colour being used at least once. It is known that the point $(0,0)$ is red and the point $(0,1)$ is blue. Prove that there exist three points with integer coordinates of distinct colours which form the vertices of a right-angled triangle.

5 Let $A B C$ be a triangle; $\Gamma_{A}, \Gamma_{B}, \Gamma_{C}$ be three equal, disjoint circles inside $A B C$ such that Γ_{A} touches $A B$ and $A C ; \Gamma_{B}$ touches $A B$ and $B C$; and Γ_{C} touches $B C$ and $C A$. Let Γ be a circle touching circles $\Gamma_{A}, \Gamma_{B}, \Gamma_{C}$ externally. Prove that the line joining the circum-centre O and the in-centre I of triangle $A B C$ passes through the centre of Γ.

6 Let $P(x)$ be a polynomial with integer coefficients. Prove that there exist two polynomials $Q(x)$ and $R(x)$, again with integer coefficients, such that
(i) $P(x) \cdot Q(x)$ is a polynomial in x^{2}, and
(ii) $P(x) \cdot R(x)$ is a polynomial in x^{3}.

