

AoPS Community

India National Olympiad 2009

www.artofproblemsolving.com/community/c4935 by skand

1	Let ABC be a tringle and let P be an interior point such that $\angle BPC = 90, \angle BAP = \angle BCP$.Let M, N be the mid points of AC, BC respectively.Suppose $BP = 2PM$.Prove that A, P, N are collinear.
2	Define a a sequence $\langle a_n \rangle_{n=1}^{\infty}$ as follows $a_n = 0$, if number of positive divisors of n is <i>odd</i> $a_n = 1$, if number of positive divisors of n is <i>even</i>
	(The positive divisors of n include 1 as well as n .)Let $x = 0.a_1a_2a_3$ be the real number whose decimal expansion contains a_n in the n -th place, $n \ge 1$.Determine, with proof, whether x is rational or irrational.
3	Find all real numbers x such that: $[x^2 + 2x] = [x]^2 + 2[x]$
	(Here $[x]$ denotes the largest integer not exceeding x .)
Day 2	
4	All the points in the plane are colored using three colors.Prove that there exists a triangle with vertices having the same color such that <i>either</i> it is isosceles <i>or</i> its angles are in geometric progression.
5	Let ABC be an acute angled triangle and let H be its ortho centre. Let h_{max} denote the largest altitude of the triangle ABC . Prove that:
	$AH + BH + CH \le 2h_{max}$
6	Let a, b, c be positive real numbers such that $a^3 + b^3 = c^3$. Prove that: $a^2 + b^2 - c^2 > 6(c - a)(c - b)$.

AoPS Online AoPS Academy AoPS & Ao