AoPS Community

India National Olympiad 2010

www.artofproblemsolving.com/community/c4936
by keyree 10

1 Let $A B C$ be a triangle with circum-circle Γ. Let M be a point in the interior of triangle $A B C$ which is also on the bisector of $\angle A$. Let $A M, B M, C M$ meet Γ in A_{1}, B_{1}, C_{1} respectively. Suppose P is the point of intersection of $A_{1} C_{1}$ with $A B$; and Q is the point of intersection of $A_{1} B_{1}$ with $A C$. Prove that $P Q$ is parallel to $B C$.

2 Find all natural numbers $n>1$ such that n^{2} does not divide $(n-2)$!.
3 Find all non-zero real numbers x, y, z which satisfy the system of equations:

$$
\begin{gathered}
\left(x^{2}+x y+y^{2}\right)\left(y^{2}+y z+z^{2}\right)\left(z^{2}+z x+x^{2}\right)=x y z \\
\left(x^{4}+x^{2} y^{2}+y^{4}\right)\left(y^{4}+y^{2} z^{2}+z^{4}\right)\left(z^{4}+z^{2} x^{2}+x^{4}\right)=x^{3} y^{3} z^{3}
\end{gathered}
$$

4 How many 6-tuples $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ are there such that each of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ is from the set $\{1,2,3,4\}$ and the six expressions

$$
a_{j}^{2}-a_{j} a_{j+1}+a_{j+1}^{2}
$$

for $j=1,2,3,4,5,6$ (where a_{7} is to be taken as a_{1}) are all equal to one another?
5 Let $A B C$ be an acute-angled triangle with altitude $A K$. Let H be its ortho-centre and O be its circum-centre. Suppose $K O H$ is an acute-angled triangle and P its circum-centre. Let Q be the reflection of P in the line $H O$. Show that Q lies on the line joining the mid-points of $A B$ and $A C$.

6 Define a sequence $<a_{n}>_{n \geq 0}$ by $a_{0}=0, a_{1}=1$ and

$$
a_{n}=2 a_{n-1}+a_{n-2},
$$

for $n \geq 2$.
(a) For every $m>0$ and $0 \leq j \leq m$, prove that $2 a_{m}$ divides $a_{m+j}+(-1)^{j} a_{m-j}$.
(b) Suppose 2^{k} divides n for some natural numbers n and k. Prove that 2^{k} divides a_{n}.

