

AoPS Community

India National Olympiad 2010

www.artofproblemsolving.com/community/c4936 by keyree10

- **1** Let ABC be a triangle with circum-circle Γ . Let M be a point in the interior of triangle ABCwhich is also on the bisector of $\angle A$. Let AM, BM, CM meet Γ in A_1, B_1, C_1 respectively. Suppose P is the point of intersection of A_1C_1 with AB; and Q is the point of intersection of A_1B_1 with AC. Prove that PQ is parallel to BC.
- **2** Find all natural numbers n > 1 such that n^2 does not divide (n 2)!.
- **3** Find all non-zero real numbers x, y, z which satisfy the system of equations:

$$(x^{2} + xy + y^{2})(y^{2} + yz + z^{2})(z^{2} + zx + x^{2}) = xyz$$
$$(x^{4} + x^{2}y^{2} + y^{4})(y^{4} + y^{2}z^{2} + z^{4})(z^{4} + z^{2}x^{2} + x^{4}) = x^{3}y^{3}z^{3}$$

4 How many 6-tuples $(a_1, a_2, a_3, a_4, a_5, a_6)$ are there such that each of $a_1, a_2, a_3, a_4, a_5, a_6$ is from the set $\{1, 2, 3, 4\}$ and the six expressions

$$a_j^2 - a_j a_{j+1} + a_{j+1}^2$$

for j = 1, 2, 3, 4, 5, 6 (where a_7 is to be taken as a_1) are all equal to one another?

5 Let *ABC* be an acute-angled triangle with altitude *AK*. Let *H* be its ortho-centre and *O* be its circum-centre. Suppose *KOH* is an acute-angled triangle and *P* its circum-centre. Let *Q* be the reflection of *P* in the line *HO*. Show that *Q* lies on the line joining the mid-points of *AB* and *AC*.

6 Define a sequence
$$\langle a_n \rangle_{n \ge 0}$$
 by $a_0 = 0$, $a_1 = 1$ and

$$a_n = 2a_{n-1} + a_{n-2},$$

for $n \ge 2$. (a) For every m > 0 and $0 \le j \le m$, prove that $2a_m$ divides $a_{m+j} + (-1)^j a_{m-j}$. (b) Suppose 2^k divides n for some natural numbers n and k. Prove that 2^k divides a_n .

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.