AoPS Community

India National Olympiad 2011

www.artofproblemsolving.com/community/c4937
by Potla

1 Let D, E, F be points on the sides $B C, C A, A B$ respectively of a triangle $A B C$ such that $B D=$ $C E=A F$ and $\angle B D F=\angle C E D=\angle A F E$. Show that $\triangle A B C$ is equilateral.

2 Call a natural number n faithful if there exist natural numbers $a<b<c$ such that $a \mid b$, and $b \mid c$ and $n=a+b+c$. (i) Show that all but a finite number of natural numbers are faithful. (ii) Find the sum of all natural numbers which are not faithful.

3 Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ and $Q(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}$ be two polynomials with integral coefficients such that $a_{n}-b_{n}$ is a prime and $a_{n} b_{0}-a_{0} b_{n} \neq 0$, and $a_{n-1}=b_{n-1}$. Suppose that there exists a rational number r such that $P(r)=Q(r)=0$. Prove that $r \in \mathbb{Z}$.

4 Suppose five of the nine vertices of a regular nine-sided polygon are arbitrarily chosen. Show that one can select four among these five such that they are the vertices of a trapezium.

5 Let $A B C D$ be a cyclic quadrilateral inscribed in a circle Γ. Let E, F, G, H be the midpoints of arcs $A B, B C, C D, A D$ of Γ, respectively. Suppose that $A C \cdot B D=E G \cdot F H$. Show that $A C, B D, E G, F H$ are all concurrent.
$6 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y) f(x-y)=(f(x)+f(y))^{2}-4 x^{2} f(y)
$$

For all $x, y \in \mathbb{R}$.

