

AoPS Community

India National Olympiad 2011

www.artofproblemsolving.com/community/c4937 by Potla

1	Let D, E, F be points on the sides BC, CA, AB respectively of a triangle ABC such that $BD = CE = AF$ and $\angle BDF = \angle CED = \angle AFE$. Show that $\triangle ABC$ is equilateral.
2	Call a natural number <i>n</i> faithful if there exist natural numbers $a < b < c$ such that $a b$, and $b c$ and $n = a + b + c$. (<i>i</i>) Show that all but a finite number of natural numbers are faithful. (<i>ii</i>) Find the sum of all natural numbers which are not faithful.
3	Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ and $Q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_0$ be two polynomials with integral coefficients such that $a_n - b_n$ is a prime and $a_n b_0 - a_0 b_n \neq 0$, and $a_{n-1} = b_{n-1}$. Suppose that there exists a rational number r such that $P(r) = Q(r) = 0$. Prove that $r \in \mathbb{Z}$.
4	Suppose five of the nine vertices of a regular nine-sided polygon are arbitrarily chosen. Show that one can select four among these five such that they are the vertices of a trapezium.
5	Let $ABCD$ be a cyclic quadrilateral inscribed in a circle Γ . Let E, F, G, H be the midpoints of arcs AB, BC, CD, AD of Γ , respectively. Suppose that $AC \cdot BD = EG \cdot FH$. Show that AC, BD, EG, FH are all concurrent.
6	Find all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying
	$f(x+y)f(x-y) = (f(x) + f(y))^2 - 4x^2f(y),$

For all $x, y \in \mathbb{R}$.

AoPS Online 🔯 AoPS Academy 🗿 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.